Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions?
Abstract
:1. Introduction
- Piezoelectric devices for rain energy harvesting;
- Triboelectric devices for rain energy harvesting;
- Photo-electron storage properties of LLP (long persistent phosphors) materials;
- Concepts of all-weather solar cells presented as is schematically shown in Figure 1.
2. Energy Harvested from Rain
2.1. Piezoelectric Devices
2.2. Triboelectric Devices
3. Photoelectron Storage
- (1)
- excitation of the charged carriers;
- (2)
- storage of the charged carrier;
- (3)
- release of the charged carriers;
- (4)
- recombination of charged carriers.
4. “All-Weather” Solar Cells
4.1. Inorganic Solar Cells
4.2. Dye-Sensitized Solar Cells
- (i)
- When they spread to the periphery and form this EDL pseudocapacitance they drag the electron transfer, and the front of the raindrops are charged;
- (ii)
- Afterward, the raindrops shrink and release electrons to the graphene and discharge the pseudocapacitance, and the repeated charging and discharging processes yield current and voltage.
5. Environmental Aspects in All-Weather Solar Cells
- (i)
- support for (current) reducing the administration regarding the waste legislation for PV modules;
- (ii)
- research support, as the rules in the near future will include all-weather solar cells [48].
6. Conclusions and Future
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LLP | long persistent phosphors |
PVDF | polyviniliden fluoride |
PVDF-TrFE | poly[(vinylidenefluoride-co-trifluoroethylene] |
T-TENG | transparent triboelectric nanogenerator |
PTFE | polytetrafluoroethylene |
GO | graphene oxide |
rGO | rGO, reduced graphene oxide |
FEP | fluorinated ethylene propylene |
PZT | lead zirconatetitanate |
LPPs | phosphorescent phosphors/long persistent phosphors |
PFO-β | poly(9,9-dioctylfluorene) β-phase |
P3HT | Poly(3-hexylthiophene-2,5-diyl) |
PCDTBT | Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] |
PTB7 | Poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl ]] |
Si-PCPDTBT | Poly[(4,4-bis(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] |
PCPDTBT | Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] |
TENG | triboelectric nanogenerator |
PDMS | polydimethylsiloxane |
DSSC | dye-sensitized solar cell |
DSD | drop site distribution |
EDL | electric double-layer |
ITO | indiumtin oxide |
FTO | fluorinated tin oxide |
PEDOT:PSS | poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) |
G-CB | graphene-carbon black |
CQD | carbon quantum dot |
VOC | open circuit voltage |
JOC | open circuit current |
PCE | power conversion efficiency |
FF | fill factor |
References
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Sharma, V.; Mathur, J. Energy and exergy analyses of various typical solar energy applications: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 1576–1601. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. Aesthetic impact of solar energy systems. Renew. Sustain. Energy Rev. 2018, 98, 227–238. [Google Scholar] [CrossRef]
- Della Ceca, L.S.; Micheletti, M.I.; Freire, M.; Garcia, B.; Mancilla, A.; Salum, G.M.; Crinó, E.; Piacentini, R.D. Solar and Climatic High Performance Factors for the Placement of Solar Power Plants in Argentina Andes Sites—Comparison With African and Asian Sites. J. Sol. Energy Eng. 2019, 141, 041004. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, X.; Yang, P.; He, B. A Solar Cell That Is Triggered by Sun and Rain. Angew. Chem. Int. Ed. 2016, 55, 5243–5246. [Google Scholar] [CrossRef]
- Tang, Q. Frontispiece: All-Weather Solar Cells: A Rising Photovoltaic Revolution. Chem. A Eur. J. 2017, 23. [Google Scholar] [CrossRef]
- Guigon, R.; Chaillout, J.-J.; Jager, T.; Despesse, G. Harvesting raindrop energy: Experimental study. Smart Mater. Struct. 2008, 17. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.M.; Son, H.; Kim, H.; Park, B.; Ku, J.; Sohn, J.I.; Im, K.; Jang, J.E.; Park, J.-J.; et al. Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy Environ. Sci. 2012, 5, 8932. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.-S.; Sun, X.; Meng, B.; Liu, W.; Zhang, H. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system. Sci. Rep. 2014, 4, 4811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Wang, J.; He, B.; Yang, P. Can dye-sensitized solar cells generate electricity in the dark? Nano Energy 2017, 33, 266–271. [Google Scholar] [CrossRef]
- Tien, N.T.; Trung, T.Q.; Seoul, Y.G.; Kim, D.I.; Lee, N.-E. Physically Responsive Field-Effect Transistors with Giant Electromechanical Coupling Induced by Nanocomposite Gate Dielectrics. ACS Nano 2011, 5, 7069–7076. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-H.; Kim, Y.-H.; Lee, M.H.; Jung, J.-Y.; Nah, J. Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8, 2766–2773. [Google Scholar] [CrossRef]
- Horiuchi, S.; Kobayashi, K.; Kumai, R.; Minami, N.; Kagawa, F.; Tokura, Y. Quantum ferroelectricity in charge-transfer complex crystals. Nat. Commun. 2015, 6, 7469. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers AU—Furukawa, Takeo. Phase Transit. 1989, 18, 143–211. [Google Scholar] [CrossRef]
- Perera, K.C.R.; Sampath, B.G.; Dassanayake, V.P.C.; Hapuwatte, B.M. Harvesting of kinetic energy of the raindrops. Int. J. Math. Comput. Phys. Quantum Eng. 2014, 8, 325–330. [Google Scholar]
- Wong, V.K.; Ho, J.-H.; Yap, E.H. Experimental Study of a Piezoelectric Rain Energy Harvester. Adv. Mater. Res. 2014, 1043, 263–267. [Google Scholar] [CrossRef]
- Bhavanasi, V.; Kumar, V.; Parida, K.; Wang, J.; Lee, P.S. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. ACS Appl. Mater. Interfaces 2016, 8, 521–529. [Google Scholar] [CrossRef]
- Wong, V.-K.; Ho, J.-H.; Chai, A.-B. Performance of a piezoelectric energy harvester in actual rain. Energy 2017, 124, 364–371. [Google Scholar] [CrossRef]
- Ong, Z.-Z.; Wong, V.-K.; Ho, J.-H. Performance enhancement of a piezoelectric rain energy harvester. Sens. Actuators A Phys. 2016, 252, 154–164. [Google Scholar] [CrossRef]
- Moon, J.K.; Jeong, J.; Lee, D.; Pak, H.K. Electrical power generation by mechanically modulating electrical double layers. Nat. Commun. 2013, 4, 1487. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K.C.; Wang, Z.L. Harvesting Water Drop Energy by a Sequential Contact-Electrification and Electrostatic-Induction Process. Adv. Mater. 2014, 26, 4690–4696. [Google Scholar] [CrossRef]
- Helseth, L.; Guo, X. Fluorinated ethylene propylene thin film for water droplet energy harvesting. Renew. Energy 2016, 99, 845–851. [Google Scholar] [CrossRef]
- Liang, Q.; Yan, X.; Gu, Y.; Zhang, K.; Liang, M.; Lu, S.; Zheng, X.; Zhang, Y. Highly transparent triboelectric nanogenerator for harvesting wa-ter-related energy reinforced by antireflection coating. Sci. Rep. 2015, 5, 9080. [Google Scholar] [CrossRef] [Green Version]
- Helseth, L. Electrical energy harvesting from water droplets passing a hydrophobic polymer with a metal film on its back side. J. Electrost. 2016, 81, 64–70. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef] [PubMed]
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Wu, J.; Xu, H.; Zhang, J.; Ci, Z.; Wang, Y. How to induce highly efficient long-lasting phosphorescence in a lamp with a commercial phosphor: A facile method and fundamental mechanisms. J. Mater. Chem. C 2015, 3, 8030–8038. [Google Scholar] [CrossRef]
- Basavaraju, N.; Priolkar, K.; Gourier, D.; Sharma, S.K.; Bessière, A.; Viana, B. The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al). Phys. Chem. Chem. Phys. 2014, 17, 1790–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojan-Piegza, J.; Niittykoski, J.; Hölsä, J.; Zych, E. Thermoluminescence and Kinetics of Persistent Luminescence of Vacuum-Sintered Tb3+-Doped and Tb3+,Ca2+-Codoped Lu2O3 Materials. Chem. Mater. 2008, 20, 2252–2261. [Google Scholar] [CrossRef]
- Trojan-Piegza, J.; Zych, E. Afterglow Luminescence of Lu2O3:Eu Ceramics Synthesized at Different Atmospheres. J. Phys. Chem. C 2010, 114, 4215–4220. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Qin, Q.; Shi, L.; Sun, J.; Zhou, M.; Liu, B.; Wang, Y. The synthesis and afterglow luminescence properties of a novel red afterglow phosphor: SnO2:Sm3+,Zr4+. Mater. Chem. Phys. 2012, 136, 320–324. [Google Scholar] [CrossRef]
- Vezie, M.; Few, S.; Meager, I.; Pieridou, G.; Dörling, B.; Ashraf, R.S.; Goñi, A.R.; Bronstein, H.; McCulloch, I.; Hayes, S.; et al. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 2016, 15, 746–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, B.D.C.; Sharma, S.K.; Dorenbos, P.; Viana, B.; Capobianco, J.A. Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557. [Google Scholar] [CrossRef]
- Van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent Luminescence in Eu2+-Doped Compounds: A Review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lei, B.; Qin, J.; Li, J.; Liu, Y.; Liu, X.; Zheng, M.; Xiao, Y.; Dong, H. Preparation of SrSi2 O2 N2: Eu2+ Phosphor by SrSi Alloy Precursor and Its Long-lasting Phosphorescence Properties. J. Am. Ceram. Soc. 2013, 96, 1810–1814. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, N.; Liu, J.; Wen, Z.; Sun, X.; Lee, S.-T.; Sun, B. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops. ACS Nano 2018, 12, 2893–2899. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; He, B.; Yang, P. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A 2016, 4, 13235–13241. [Google Scholar] [CrossRef]
- Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, H.; He, B.; Yang, P. An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy 2016, 30, 818–824. [Google Scholar] [CrossRef]
- Duan, Y.; Tang, Q.; Liu, J.; He, B.; Yu, L. Transparent Metal Selenide Alloy Counter Electrodes for High-Efficiency Bifacial Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 14569–14574. [Google Scholar] [CrossRef]
- Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z.-S. In Situ Growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2012, 134, 10953–10958. [Google Scholar] [CrossRef]
- Yang, J.; Tang, Q.; Meng, Q.; Zhang, Z.; Li, J.; He, B.; Yang, P. Photoelectric conversion beyond sunny days: All-weather carbon quantum dot solar cells. J. Mater. Chem. A 2016, 5, 2143–2150. [Google Scholar] [CrossRef]
- Srinivasan, S.; Kottam, V.K.R. Solar photovoltaic module production: Environmental footprint, management horizons and investor goodwill. Renew. Sustain. Energy Rev. 2018, 81, 874–882. [Google Scholar] [CrossRef]
- Burke, D.J.; Lipomi, D.J. Green chemistry for organic solar cells. Energy Environ. Sci. 2013, 6, 2053–2066. [Google Scholar] [CrossRef] [Green Version]
- Kippelen, B.; Brédas, J.-L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251–261. [Google Scholar] [CrossRef]
- Zimmermann, Y.-S.; Schäffer, A.; Hugi, C.; Fent, K.; Corvini, P.F.-X.; Lenz, M. Organic photovoltaics: Potential fate and effects in the environment. Environ. Int. 2012, 49, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Ebnesajjad, S. 17—Safety, Disposal, and Recycling of Fluoropolymers. In Melt Processible Fluoroplastics; Ebnesajjad, S., Ed.; William Andrew Publishing: Norwich, NY, USA, 2003; pp. 541–548. [Google Scholar]
- Energy Research Centre Netherlands (NL) MN, IMEC (BE), XJET 3D (IDE), Technical Plating (ES), Eurotron (NL) and PV CYCLE (BE). CU-PV Cradle-to-Cradle Sustainable PV Modules, Policy Brief 2016. 2015. Available online: https://www.sustainablepv.eu/fileadmin/sustainablepv/user/doc/POLICY_BRIEF_CU_PV_FINAL_V2.pdf (accessed on 29 June 2021).
Device Configuration | Voltage Output [V] | Energy Accumulated [μJ] | Power Density [µW cm−2] | Ref. |
---|---|---|---|---|
PVDF membrane | - | - | 2.231 × 10−19 a | [15] |
Ag/PVDF-TrFE(10µm)/GO(20µm)/Ag | 4.00 ± 0.23 | - | 4.41 b | [17] |
PVDF/PZT beam | 7.6 | 2076 | 213 | [18] |
PZT beam | 7.428 | 1811 | - | [19] |
Device Configuration | Voltage Output [V] | Current Density [μA cm−2] | Power Density [µW cm−2] | Ref. |
---|---|---|---|---|
PTFE/FTO/Glass | 10 | 2 | 1.156 | [23] |
FEP/metal electrode | 3 | 0.026 | - | [24] |
Host Material | Activator | Co-Dopant | Afterglow (nm) | Excitation Band | Afterglow Duration | Ref. |
CaO | Eu3+ | - | 592, 616 | 254 | 2 h | [25] |
ZrO2 | Sm3+ | Sn4+ | 550–700 | 254 | 900 s | [29] |
Lu2O3 | Tb3+ | Ca2+, Sr2+ | 543 | 270 | 20–30 h | [30] |
SnO2 | Sm3+ | Zr4+ | 550–700 | 254 | 900 s | [32] |
CaS | Eu2+ | Tm3+ | 650 | Xe lamp | 1 h | [33] |
SrS | Eu2+ | Pr3+ | 611 | 440 | 1000 min | [34] |
Y2O2S | Eu3+ | Mg2+, Ti4+ | 590, 614, 627, 710 | 365 | 3 h | [25] |
Ca2Si5N8 | Eu2+ | Tm3+ | 500–750 | 420 | 200 min | [34] |
BaAlSi5N7O2 | Eu2+ | - | 400–650 | 254 | 40 min | [34] |
AlN | Mn2+ | - | 570–700 | 254 | 1 h | [25] |
Ca2SnO4 | Sm3+ | - | 566, 609, 633 | 252 | 1 h | [25] |
Sr3Sn2O7 | Sm3+ | - | 580, 621, 665, 735 | 267 | 1 h | [25] |
CaSnO3 | Tb3+ | - | 491, 545, 588, 622 | 264 | 4 h | [25] |
Injection Velocity [mL/h] | 40 a | 60 a | 80 a | 100 a | 200 a | 300 a | 100 b | 100 c | 100 d |
---|---|---|---|---|---|---|---|---|---|
Parameters | |||||||||
Current [µA] | 4.9 | 2.1 | 1.6 | 1.4 | 1.2 | 0.9 | 1.9 | 1.4 | 1.2 |
Voltage [µV] | 62.0 | 51.6 | 45.7 | 44.1 | 37.2 | 36.1 | 102.9 | 43.9 | 43.7 |
Power [pW] | 303.8 | 94.8 | 73.1 | 53.7 | 44.1 | 33.0 | 183.1 | 45.2 | 31.9 |
Photoanodes | Voc (V) | Jsc (mAcm−2) | PCE (%) | FF (%) |
---|---|---|---|---|
TiO2/LLP-green | 0.753 | 19.02 | 10.08 | 70.38 |
TiO2/LLP-cyan | 0.744 | 17.67 | 9.07 | 68.99 |
TiO2/LLP-blue | 0.732 | 17.29 | 8.62 | 68.11 |
TiO2/LLP-white | 0.725 | 17.25 | 8.39 | 67.09 |
TiO2/LLP-purple | 0.716 | 17.04 | 8.01 | 65.65 |
TiO2/LLP-red | 0.715 | 14.96 | 7.27 | 67.97 |
TiO2 | 0.703 | 16.36 | 8.08 | 70.25 |
TiO2/LLP-green | 0.343 | 0.247 | 26.69 | 67.66 |
TiO2/LLP-cyan | 0.326 | 0.226 | 22.62 | 67.11 |
TiO2/LLP-blue | 0.311 | 0.193 | 20.87 | 67.04 |
TiO2/LLP-white | 0.302 | 0.184 | 19.78 | 66.36 |
TiO2/LLP-purple | 0.298 | 0.138 | 15.35 | 65.77 |
TiO2/LLP-red | 0.157 | 0.065 | 3.02 | 63.05 |
TiO2 | 0 | 0 | 0 | - |
Electrodes | PCE (%) | Current (µA) | Voltage (µV) | Ref. |
---|---|---|---|---|
rGO | 6.53 | 0.49 | 109.26 | [5] |
Electrophoretic graphene | 9.14 | 4.9 | 62.0 | [37] |
Monolayer graphene | 7.69 | 0.66 | 61.8 | [37] |
G-CB/PTFE | 9.8 | 0.78 | 77.52 | [39] |
Pt | 6.75 | 0.11 | 0 | [6] |
PtNi5 | 10.38 | 1.13 | 27.76 | [6] |
PtFe5 | 8.83 | 0.67 | 22.55 | [6] |
PtCo5 | 8.47 | 3.90 | 115.52 | [6] |
PtCu5 | 8.22 | 3.18 | 76.39 | [6] |
PtMo5 | 6.69 | 2.18 | 57.60 | [6] |
Ni | 0.93 | 0 | 0 | [6] |
TiO2/LPP-green (dark) | 26.69 | 0.247 | 0.343 V | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanowicz, K.A. Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions? Energies 2021, 14, 5796. https://doi.org/10.3390/en14185796
Bogdanowicz KA. Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions? Energies. 2021; 14(18):5796. https://doi.org/10.3390/en14185796
Chicago/Turabian StyleBogdanowicz, Krzysztof A. 2021. "Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions?" Energies 14, no. 18: 5796. https://doi.org/10.3390/en14185796
APA StyleBogdanowicz, K. A. (2021). Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions? Energies, 14(18), 5796. https://doi.org/10.3390/en14185796