Effect of Lignite Properties on Its Suitability for the Implementation of Underground Coal Gasification (UCG) in Selected Deposits
Abstract
:1. Introduction
2. Materials and Methods
2.1. UCG Experimental Installation
2.2. Lignite Samples and Creation the Coal Seams
- Sintering temperature;
- Softening temperature;
- Melting temperature;
- Flow (fluid) temperature.
2.3. Gasification Test Procedure
3. Results and Discussion
3.1. Gas Production Rate and Gas Composition
3.2. Balance Calculations Results
3.3. Temperature Distribution
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook 2019; IEA: Paris, France, 2019; Available online:https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 3 August 2021).
- Perkins, G. Underground Coal Gasification. Part I: Field demonstrations and process performance. Progr. Energy Comb. Sci. 2018, 67, 158–187. [Google Scholar] [CrossRef]
- Couch, G. Underground coal Gasification; CCC/151; IEA Clean Coal Centre: London, UK, 2009; p. 129. [Google Scholar]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Underground coal gasification: From fundamentals to applications. Prog. Energy Combust. Sci. 2013, 39, 189–214. [Google Scholar] [CrossRef]
- Zagorščak, R.; An, N.; Palange, R.; Green, M.; Krishnan, M.; Thomas, H.R. Underground coal gasification—A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata. Fuel 2019, 253, 349–360. [Google Scholar] [CrossRef]
- Klebingat, S.; Kempka, T.; Schulten, M.; Azzam, R.; Fernández-Steeger, M.T. Optimization of synthesis gas heating values and tar by-product yield in underground coal gasification. Fuel 2018, 229, 248–261. [Google Scholar] [CrossRef]
- Klebingat, S.; Kempka, T.; Schulten, M.; Azzam, R.; Fernandez-Steeger, T.M. Innovative thermodynamic underground coal gasification model for coupled synthesis gas quality and tar production analyses. Fuel 2016, 183, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Perkins, G. Underground coal gasification—Part II: Fundamental phenomena and modeling. Prog. Energy Combust. Sci. 2018, 67, 234–274. [Google Scholar] [CrossRef]
- Perkins, G.; Sahajwalla, V. A Mathematical Model for the Chemical Reaction of a Semi-infinite Block of Coal in Underground Coal Gasification. Energy Fuels 2005, 19, 1679–1692. [Google Scholar] [CrossRef]
- Laciak, M.; Kostúr, K.; Durdán, M.; Kačur, J.; Flegner, P. The analysis of the underground coal gasification in experimental equipment. Energy 2016, 114, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.; Friedmann, J.; Upadhye, R. Best Practices in Underground Coal Gasification; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2005. [Google Scholar]
- BP Statistical Review of World Energy 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-coal.pdf (accessed on 25 July 2021).
- Bielowicz, B.; Kasiński, J.R. The possibility of underground gasification of lignite from Polish deposits. Int. J. Coal Geol. 2014, 131, 304–318. [Google Scholar] [CrossRef]
- Kapusta, K.; Wiatowski, M.; Stańczyk, K. An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process. Fuel 2016, 179, 150–155. [Google Scholar] [CrossRef]
- Kapusta, K.; Stańczyk, K.; Wiatowski, M. Comparison of the Contaminants in the Wastewater Produced in the Ex Situ Underground Ortho- and Meta-Lignite Gasification. Water Air Soil Pollut. 2019, 230, 200. [Google Scholar] [CrossRef] [Green Version]
- Strugała–Wilczek, A.; Basa, W.; Kapusta, K.; Soukup, K. In situ sorption phenomena can mitigate potential negative environmental effects of underground coal gasification (UCG)—An experimental study of phenol removal on UCG-derived residues in the aspect of contaminant retardation. Ecotoxicol. Environ. Saf. 2021, 208, 111710. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, K.; Stańczyk, K. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect. Ecotoxicol. Environ. Saf. 2015, 112, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Stańczyk, K.; Howaniec, N.; Smoliński, A.; Świądrowski, J.; Kapusta, K.; Wiatowski, M.; Grabowski, J.; Rogut, J. Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel 2011, 90, 1953–1962. [Google Scholar] [CrossRef]
- Stańczyk, K.; Smoliński, A.; Kapusta, K.; Wiatowski, M.; Świądrowski, J.; Kotyrba, A.; Rogut, J. Dynamic experimental simulation of hydrogen oriented underground gasification of lignite. Fuel 2010, 89, 3307–3314. [Google Scholar] [CrossRef]
- Wiatowski, M.; Kapusta, K.; Stańczyk, K. Efficiency assessment of underground gasification of ortho- and meta-lignite: High-pressure ex situ experimental simulations. Fuel 2019, 236, 221–227. [Google Scholar] [CrossRef]
- Gür, M.; Eskin, N.; Okutan, H.; Arısoy, A.; Böke, E.; Altıntaş, Ü.; Büyükşirin, A.Y.O.; Canbaz, E.D.; Yıldırım, O. Experimental results of underground coal gasification of Turkish lignite in an ex-situ reactor. Fuel 2017, 203, 997–1006. [Google Scholar] [CrossRef]
No. | Parameter | Lignite Sample | |
---|---|---|---|
Velenje | Oltenia | ||
As received | |||
1 | Total moisture Wtr, % | 31.62 | 45.64 |
2 | Ash Atr, % | 4.29 | 8.86 |
3 | Volatiles Vr, % | 43.67 | 25.78 |
4 | Total sulfur Str, % | 0.51 | 1.49 |
5 | Calorific value Qir, kJ/kg | 13,615 | 10,642 |
Analytical | |||
6 | Moisture Wa, % | 11.13 | 11.49 |
7 | Ash Aa, % | 5.57 | 14.42 |
8 | Volatiles Va, % | 56.76 | 41.98 |
9 | Heat of combustion Qsa, kJ/kg | 19,719 | 20,001 |
10 | Calorific value Qia, kJ/kg | 18,427 | 18,860 |
11 | Total sulfur Sa, % | 0.66 | 2.43 |
12 | Carbon Cta, % | 49.86 | 49.49 |
13 | Hydrogen Hta, % | 4.67 | 3.94 |
14 | Nitrogen Na, % | 0.64 | 1.34 |
15 | Oxygen Oda, % | 27.83 | 17.12 |
Lignite Sample | Gas Composition, %vol. | Q, MJ/Nm3 | |||||||
---|---|---|---|---|---|---|---|---|---|
CO2 | C2H6 | H2 | O2 | N2 | CH4 | CO | H2S | ||
Velenje | 52.5 | 0.2 | 21.0 | 1.0 | 2.0 | 4.3 | 18.6 | 0.5 | 6.4 |
Oltenia | 63.3 | 0.2 | 21.3 | 0.2 | 1.5 | 2.7 | 10.2 | 0.6 | 4.8 |
Parameter | Velenje | Oltenia |
---|---|---|
Total coal consumption (kg) | 730 | 790 |
Average coal consumption rate (kg/h) | 6.1 | 8.2 |
Average gas production rate (Nm3/h) | 5.7 | 6.1 |
Average reactor power (kW) | 10.3 | 8.1 |
Gross energy efficiency (%) | 44.6 | 33.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapusta, K. Effect of Lignite Properties on Its Suitability for the Implementation of Underground Coal Gasification (UCG) in Selected Deposits. Energies 2021, 14, 5816. https://doi.org/10.3390/en14185816
Kapusta K. Effect of Lignite Properties on Its Suitability for the Implementation of Underground Coal Gasification (UCG) in Selected Deposits. Energies. 2021; 14(18):5816. https://doi.org/10.3390/en14185816
Chicago/Turabian StyleKapusta, Krzysztof. 2021. "Effect of Lignite Properties on Its Suitability for the Implementation of Underground Coal Gasification (UCG) in Selected Deposits" Energies 14, no. 18: 5816. https://doi.org/10.3390/en14185816
APA StyleKapusta, K. (2021). Effect of Lignite Properties on Its Suitability for the Implementation of Underground Coal Gasification (UCG) in Selected Deposits. Energies, 14(18), 5816. https://doi.org/10.3390/en14185816