Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Densification, Measurements, and Quality Tests
2.3. Fourier Transform Infrared Spectroscopic (FT-IR) and Scanning Electron Microscopic Analysis
3. Results and Discussion
3.1. Material Data
3.2. Quality Data
3.3. Chemical Analyses
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Walker, S.; Strauss, W. Global Wood Pellet Markets Outlook. 2019. Available online: https://www.canadianbiomassmagazine.ca/2019-wood-pellet-markets-outlook-7190/ (accessed on 8 October 2020).
- Brandeis, C.; Abt, K.L. Roundwood use by Southern wood pellet mills: Findings from timber product output mill surveys. J. For. 2019, 117, 427–434. [Google Scholar] [CrossRef]
- Kaliyan, N.; Vance Morey, R. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Rumpf, H. The strength of granules and agglomerate. In Proceedings of the First International Symposium on Agglomeration, Philadelphia, Philadelphia, PA, USA, 12–14 April 1961; John Wiley and Sons: London, UK, 1962; pp. 379–418. [Google Scholar]
- Mani, S.; Tabil, L.; Sokhansanj, S. Compaction of biomass grinds-an overview of compaction of biomass grinds. Powder Handl. Process. 2003, 15, 160–168. [Google Scholar]
- Kaliyan, N.; Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef]
- Stelte, W.; Sanadi, A.R.; Shang, L.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B. Recent developments in biomass pelletization—A review. BioResources 2012, 7, 4451–4490. [Google Scholar] [CrossRef]
- Poddar, S.; Kamruzzaman, M.; Sujan, S.M.A.; Hossain, M.; Jamal, M.S.; Gafur, M.A.; Khanam, M. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 2014, 131, 43–48. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Ramírez-Gómez, Á. Research needs on biomass characterization to prevent handling problems and hazards in industry. Part. Sci. Technol. 2016, 34, 432–441. [Google Scholar] [CrossRef]
- Holm, J.K.; Henriksen, U.B.; Hustad, J.E.; Sørensen, L.H. Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy Fuels 2006, 20, 2686–2694. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Henrikson, G.; Frodeson, S.; Ståhl, M. A review of the mechanism of bonding in densified biomass pellets. Renew. Sustain. Energy Rev. 2021, 148, 111249. [Google Scholar] [CrossRef]
- Picchio, R.; Latterini, F.; Venanzi, R.; Stefanoni, W.; Suardi, A.; Tocci, D.; Pari, L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Tarasov, D.; Shahi, C.; Leitch, M. Effect of additives on wood pellet physical and thermal characteristics: A review. ISRN For. 2013, 2013, 876939. [Google Scholar] [CrossRef] [Green Version]
- Kuokkanen, M.J.; Vilppo, T.; Kuokkanen, T.; Stoor, T.; Niinimäki, J. Additives in wood pellet production—A pilot-scale study of binding agent usage. BioResources 2011, 6, 4331–4355. [Google Scholar]
- Larsson, S.; Lockneus, O.; Xiong, S.; Samuelsson, R. Cassava stem powder as an additive in biomass fuel pellet production. Energy Fuels 2015, 29, 5902–5908. [Google Scholar] [CrossRef]
- Berghel, J.; Frodeson, S.; Granström, K.; Renström, R.; Ståhl, M.; Nordgren, D.; Tomani, P. The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Process. Technol. 2013, 112, 64–69. [Google Scholar] [CrossRef]
- Samuelsson, R.; Finell, M.; Arshadi, M.; Hedman, B.; Subirana, J. Inblandning av Stärkelse och Lignosulfonat i Pellets vid Bioenergi i Luleå AB; Department of Forest Biomaterials and Technology: Uppsala, Sweden, 2014; Volume 29. [Google Scholar]
- Khlifi, S.; Lajili, M.; Belghith, S.; Mezlini, S.; Tabet, F.; Jeguirim, M. Briquettes production from olive mill waste under optimal temperature and pressure conditions: Physico-chemical and mechanical characterizations. Energies 2020, 13, 1214. [Google Scholar] [CrossRef] [Green Version]
- Frodeson, S.; Henriksson, G.; Berghel, J. Pelletizing pure biomass substances to investigate the mechanical properties and bonding mechanisms. BioResources 2018, 13, 1202–1222. [Google Scholar] [CrossRef] [Green Version]
- Frodeson, S.; Henriksson, G.; Berghel, J. Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances. Biomass Bioenergy 2019, 122, 322–330. [Google Scholar] [CrossRef]
- Frodeson, S.; Lindén, P.; Henriksson, G.; Berghel, J. Compression of biomass substances—A study on springback effects and color formation in pellet manufacture. Appl. Sci. 2019, 9, 4302. [Google Scholar] [CrossRef] [Green Version]
- Frodeson, S. Towards understanding the Pelletizing Process of Biomass: Perspectives on Energy Efficiency and Pelletability of Pure Substances; Karlstads universitet: Karlstad, Sweden, 2019. [Google Scholar]
- Larsson, S.; Agar, D.; Rudolfsson, M.; Da Silva Perez, D.; Campargue, M.; Kalen, G.; Thyrel, M. Using macromolecular composition to predict optimal process settings in ring-die biomass pellet production. Fuel 2021, 283, 9. [Google Scholar] [CrossRef]
- Ek, M.; Gellerstedt, G.; Henriksson, G. Wood Chemistry and Biotechnology; Walter de Gruyter: Berlin, Germany, 2009; Volume 1. [Google Scholar]
- Anukam, A.I.; Berghel, J.; Frodeson, S.; Famewo, E.B.; Nyamukamba, P. Characterization of pure and blended pellets made from Norway spruce and Pea starch: A comparative study of bonding mechanism relevant to quality. Energies 2019, 12, 4415. [Google Scholar] [CrossRef] [Green Version]
- Kudahettige-Nilsson, R.L.; Ullsten, H.; Henriksson, G. Plastic composites made from glycerol, citric acid, and forest components. BioResources 2018, 13, 6600–6612. [Google Scholar] [CrossRef]
- Bi, R.; Berglund, J.; Vilaplana, F.; McKee, L.S.; Henriksson, G. The degree of acetylation affects the microbial degradability of mannans. Polym. Degrad. Stab. 2016, 133, 36–46. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; MacNaughtan, W.; Sworn, G.; Foster, T.J. New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydr. Polym. 2016, 144, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliyan, N.; Morey, R.V. Constitutive model for densification of corn stover and switchgrass. Biosyst. Eng. 2009, 104, 47–63. [Google Scholar] [CrossRef]
- Dhamodaran, A.; Afzal, M.T. Compression and springback properties of hardwood and softwood pellets. BioResources 2012, 7, 4362–4376. [Google Scholar]
- Anukam, A.I.; Berghel, J.; Famewo, E.B.; Frodeson, S. Improving the understanding of the bonding mechanism of primary components of biomass pellets through the use of advanced analytical instruments. J. Wood Chem. Technol. 2020, 40, 15–32. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, R.; Thyrel, M.; Sjöström, M.; Lestander, T.A. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Process. Technol. 2009, 90, 1129–1134. [Google Scholar] [CrossRef]
- Filbakk, T.; Skjevrak, G.; Høibø, O.; Dibdiakova, J.; Jirjis, R. The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Process. Technol. 2011, 92, 871–878. [Google Scholar] [CrossRef]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Fuel pellets from wheat straw: The effect of lignin glass transition and surface waxes on pelletizing properties. Bioenergy Res. 2012, 5, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.O. Factors Affecting Wood Pellet Durability; The Pennsylvania State University: State College, PA, USA, 2010. [Google Scholar]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Thermal transitions of the amorphous polymers in wheat straw. Ind. Crops Prod. 2011, 34, 1053–1056. [Google Scholar] [CrossRef] [Green Version]
- Berglund, J.; Angles d’Ortoli, T.; Vilaplana, F.; Widmalm, G.; Bergenstråhle-Wohlert, M.; Lawoko, M.; Henriksson, G.; Lindström, M.; Wohlert, J. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. Plant J. 2016, 88, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Ståhl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Effects on pellet properties and energy use when starch is added in the wood-fuel pelletizing process. Energy Fuels 2012, 26, 1937–1945. [Google Scholar] [CrossRef]
- Gemechu, F.G. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci. Technol. 2020, 104, 235–261. [Google Scholar] [CrossRef]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 2005, 24, 13–26. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.P.K.; Gardner, D.J.; Felby, C. Effect of extractives and storage on the pelletizing process of sawdust. Fuel 2010, 89, 94–98. [Google Scholar] [CrossRef]
- Ebringerová, A.; Hromadkova, Z.; Hřibalová, V. Structure and mitogenic activities of corn cob heteroxylans. Int. J. Biol. Macromol. 1995, 17, 327–331. [Google Scholar] [CrossRef]
The Variation of Carbohydrates in the Woods (rel.%) | |||||
---|---|---|---|---|---|
Glucose | Xylose | Mannose | Arabinose | Galactose | |
Beech | 67.7 | 27.9 | 1.9 | 0.8 | 1.7 |
Pine | 66.4 | 11.4 | 16.1 | 3.0 | 3.1 |
Test | Name | Origin |
---|---|---|
Cellulose | Avicel | Sigma–Aldrich (Darmstadt, Germany), Avicel®PH−101 product number 11365 |
Mannan | Locust bean gum mannan | Sigma–Aldrich, product number G0753 |
Xylan | Eucalypt xylan | Delivered by KTH Royal Institute of Technology |
Galactan | Latch arabinogalactan | Hunan Kangshou Pharmaceutical Co., Ltd. (Changsha, China) |
Starch wheat | Wheat starch | Native wheat starch from Solam GmbH (Kristianstad, Sweden) |
Starch potato | Potato starch | Native potato starch from Solam GmbH (Kristianstad, Sweden) |
Pectin | Apple pectin | Sigma–Aldrich, product number 93854 |
Lignin | Lignoboost lignin | Dry Kraft lignin from the LignoBoost process (Metso, Kristinehamn, Sweden) |
Protein | Protein (Soy) | Sigma–Aldrich, product number S1674 |
Tannin | Tannin | Sigma–Aldrich, product number W304204 |
Resin | Resin | Claessons Trätjära (wood tar) AB (Gothenburg), Sweden, product number 1211000 |
Test | Moisture Content (%) | Pellet | |||||||
---|---|---|---|---|---|---|---|---|---|
Weight (g) | Diameter (mm) | Length (mm) | |||||||
Inlet | Pellets | Green | Green | Cured | Comp | Green | Cured | ||
Beech | Control | 9.60 | 7.73 | 0.982 ± 0.003 | 8.23 ± 0.012 | 8.23 ± 0.016 | 12.71 ± 0.13 | 15.62 ± 0.58 * | 15.62 ± 0.58 * |
Cellulose | 8.95 | 7.80 | 0.983 ± 0.003 | 8.21 ± 0.006 | 8.24 ± 0.005 | 11.98 ± 0.12 | 15.44 ± 0.11 | 15.37 ± 0.12 | |
Mannan | 9.35 | 7.85 | 0.979 ± 0.004 | 8.22 ± 0.012 | 8.24 ± 0.008 | 11.84 ± 0.14 | 15.48 ± 0.07 | 15.38 ± 0.07 | |
Xylan | 8.85 | 8.07 | 0.980 ± 0.002 | 8.24 ± 0.006 | 8.22 ± 0.005 | 11.66 ± 0.10 | 15.21 ± 0.12 | 14.71 ± 0.09 | |
Starch (w) | 10.65 | 9.10 | 0.977 ± 0.006 | 8.20 ± 0.011 | 8.21 ± 0.000 | 11.88 ± 0.12 | 15.81 ± 0.06 | 15.70 ± 0.06 | |
Starch (p) | 9.60 | 2.70 * | 0.980 ± 0.005 | 8.18 ± 0.009 | 8.19 ± 0.004 | 11.89 ± 0.12 | 15.21 ± 0.13 | 15.14 ± 0.14 | |
Galactan | 8.35 | 7.23 | 0.981 ± 0.004 | 8.30 ± 0.015 | 8.30 ± 0.003 | 11.58 ± 0.09 | 16.13 ± 0.09 | 15.94 ± 0.11 | |
Pectin | 11.95 | 10.24 | 0.979 ± 0.009 | 8.21 ± 0.009 | 8.22 ± 0.010 | 12.37 ± 0.17 | 16.71 ± 0.25 | 16.57 ± 0.22 | |
Lignin | 8.80 | 7.48 | 0.976 ± 0.006 | 8.24 ± 0.008 | 8.24 ± 0.008 | 12.68 ± 0.06 | 15.35 ± 0.16 | 15.27 ± 0.13 | |
Protein | 9.25 | 8.00 | 0.979 ± 0.004 | 8.25 ± 0.024 | 8.30 ± 0.007 | 11.88 ± 0.11 | 16.67 ± 0.09 | 16.73 ± 0.08 | |
Tannin | 9.55 | 8.09 | 0.974 ± 0.011 | 8.22 ± 0.019 | 8.22 ± 0.004 | 12.40 ± 0.18 | 14.75 ± 0.27 | 14.81 ± 0.21 | |
Resin | 8.51 | 8.35 | 0.979 ± 0.005 | 8.25 ± 0.014 | 8.27 ± 0.005 | 12.83 ± 0.07 | 16.40 ± 0.15 | 15.99 ± 0.17 | |
Pine | Control | 9.85 | 2.74 * | 0.973 ± 0.008 | 8.23 ± 0.013 | 8.18 ± 0.008 | 12.36 ± 0.11 | 16.09 ± 0.04 | 15.92 ± 0.07 |
Cellulose | 9.65 | 7.64 | 0.980 ± 0.003 | 8.20 ± 0.008 | 8.22 ± 0.005 | 11.90 ± 0.04 | 15.78 ± 0.04 | 15.62 ± 0.08 | |
Mannan | 11.85 | 9.36 | 0.978 ± 0.004 | 8.20 ± 0.019 | 8.25 ± 0.006 | 11.89 ± 0.10 | 16.92 ± 0.09 | 16.80 ± 0.06 | |
Xylan | 9.45 | 7.96 | 0.984 ± 0.003 | 8.22 ± 0.015 | 8.24 ± 0.006 | 11.85 ± 0.10 | 15.22 ± 0.11 | 15.20 ± 0.13 | |
Starch (w) | 10.35 | 9.02 | 0.973 ± 0.007 | 8.23 ± 0.005 | 8.20 ± 0.007 | 12.15 ± 0.09 | 15.22 ± 0.11 | 15.20 ± 0.13 | |
Starch (p) | 9.50 | 8.53 | 0.971 ± 0.012 | 8.23 ± 0.005 | 8.20 ± 0.007 | 11.73 ± 0.39 | 15.47 ± 0.24 | 15.20 ± 0.13 | |
Galactan | 9.44 | 7.47 | 0.985 ± 0.006 | 8.24 ± 0.009 | 8.27 ± 0.005 | 12.47 ± 0.08 | 16.05 ± 0.22 | 16.39 ± 0.12 | |
Pectin | 10.05 | 8.64 | 0.986 ± 0.004 | 8.20 ± 0.009 | 8.22 ± 0.005 | 11.92 ± 0.06 | 16.04 ± 0.12 | 15.87 ± 0.14 | |
Lignin | 9.70 | 8.11 | 0.979 ± 0.003 | 8.23 ± 0.003 | 8.25 ± 0.005 | 12.13 ± 0.08 | 15.68 ± 0.04 | 15.53 ± 0.04 | |
Protein | 10.15 | 8.81 | 0.968 ± 0.010 | 8.32 ± 0.007 | 8.30 ± 0.005 | 11.60 ± 0.15 | 16.13 ± 0.25 | 16.03 ± 0.29 | |
Tannin | 9.65 | 8.61 | 0.973 ± 0.018 | 8.25 ± 0.020 | 8.22 ± 0.010 | 11.73 ± 0.14 | 15.19 ± 0.33 | 15.01 ± 0.34 | |
Resin | 9.90 | 8.54 | 0.962 ± 0.019 | 8.31 ± 0.015 | 8.29 ± 0.014 | 11.76 ± 0.27 | 16.34 ± 0.45 | 16.11 ± 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frodeson, S.; Anukam, A.I.; Berghel, J.; Ståhl, M.; Lasanthi Kudahettige Nilsson, R.; Henriksson, G.; Bosede Aladejana, E. Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine. Energies 2021, 14, 5895. https://doi.org/10.3390/en14185895
Frodeson S, Anukam AI, Berghel J, Ståhl M, Lasanthi Kudahettige Nilsson R, Henriksson G, Bosede Aladejana E. Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine. Energies. 2021; 14(18):5895. https://doi.org/10.3390/en14185895
Chicago/Turabian StyleFrodeson, Stefan, Anthony Ike Anukam, Jonas Berghel, Magnus Ståhl, Rasika Lasanthi Kudahettige Nilsson, Gunnar Henriksson, and Elizabeth Bosede Aladejana. 2021. "Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine" Energies 14, no. 18: 5895. https://doi.org/10.3390/en14185895
APA StyleFrodeson, S., Anukam, A. I., Berghel, J., Ståhl, M., Lasanthi Kudahettige Nilsson, R., Henriksson, G., & Bosede Aladejana, E. (2021). Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine. Energies, 14(18), 5895. https://doi.org/10.3390/en14185895