Old and Modern Wooden Buildings in the Context of Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Most Common Damage to Structural Timber Members
2.2. Structural Timber Testing—Condition Assessment
- Tomograph,
- Resistographs,
- Pilodin (a device designed to evaluate the cutting resistance of wood),
- A thermal imaging camera.
2.3. The Use of Neural Networks for the Prediction of Selected Wood Characteristics
- Approximation forecasts the prediction of outputs without having to explicitly define the relationship between these data;
- Classification and pattern recognition;
- Data association;
- Analysis and processing of predictive data.
- n input signals xi with weight wi;
- One output signal y;
- The excitation e of the neuron, which is the sum of the weighted input signals, is expressed as:
- activation (transition) function f(e).
- Unidirectional networks;
- Recurrent networks;
- Self-organising maps.
- Layered linear networks (Adaline/Madaline, Multilayer Perceptron).
- Layered nonlinear networks.
- ◦
- Networks learned by back-propagation (BP) algorithm.
- ◦
- Networks with circular symmetry function (RBF).
- Feedback networks.
- ◦
- Hopfield networks.
- ◦
- Networks with bidirectional associative memory (BAM).
- Competition learning networks.
- ◦
- Kohonen Network (LVQ).
- ◦
- Self-organising network (SOM).
- Resonance networks (ART).
- Hybrid networks.
- Obtained through the implementation of the FuzzyARTMAP network;
- Based on the BP back-propagation network concept;
- Based on networks that use connections between neurons and other nearest neighbour neurons, the nearest neighbour method.
- Availability of the Statistica software;
- Global approximation of such networks;
- More complex topology than RBF networks;
- A backpropagation learning algorithm (more complex than nearest-neighbour networks).
3. Results
3.1. Results of “In Situ” Analyses
3.1.1. Storage of Dry Roughage
- The dead weight of the structure was defined in the program by imposing on the individual members appropriate cross-sections and by defining the wood class as C24 in the first iteration and C20 in the second iteration, while reducing the cross-sectional dimensions to the real ones resulting from the in situ tests;
- Snow was assumed as the first snow zone according to [126], so sk = 0.7 kN/m2, making it the standard load scheme as for a pitched roof;
- Wind was assumed as for the first wind zone according to [127], so vb = 22 m/s was automatically generated in the wind tunnel. The load on the wind direction θ = 0° was omitted due to the connection with the neighboring building.
3.1.2. Military Casino
3.1.3. Granary
3.2. Prediction of Selected Characteristics of Biologically Corroded Wood
- Number of inputs: 5.
- Network type: multilayer perceptron (unidirectional multilayer networks, MLP networks).
- Learning algorithm—BFGS (variable metric method).
- Number of neurons in the hidden layer: 4–6.
- Error function: sum of squares.
- Output function linear.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schmidt, J.; Kaliske, M. Models for numerical failure analysis of wooden structures. Eng. Struct. 2009, 31, 571–579. [Google Scholar] [CrossRef]
- Konopka, D.; Gebhardt, C.; Kaliske, M. Numerical modelling of wooden structures. J. Cult. Herit. 2017, 27, S93–S102. [Google Scholar] [CrossRef]
- Oudjene, M.; Khelifa, M. Finite element modelling of wooden structures with large deformations and brittle failure prediction. Mater. Des. 2009, 30, 4081–4087. [Google Scholar] [CrossRef]
- Marsili, R.; Rossi, G.; Speranzini, E. Fibre Bragg Gratings for the Monitoring of Wooden Structures. Materials 2017, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Optimization approaches and climates investigations in NZEB—A review. Build. Simul. 2018, 11, 923–952. [Google Scholar] [CrossRef]
- Tabrizi, A.; Sanguinetti, P. Life-cycle cost assessment and energy performance evaluation of NZEB enhancement for LEED-rated educational facilities. Adv. Build. Energy Res. 2015, 9, 267–279. [Google Scholar] [CrossRef]
- Zheng, L.; Lai, J. Environmental and economic evaluations of building energy retrofits: Case study of a commercial building. Build. Environ. 2018, 145, 14–23. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Meng, J.; Long, Y.; Zhou, X.; Li, Z.; Wang, Y.; Liang, Y. Carbon footprint in building distributed energy system: An optimization-based feasibility analysis for potential emission reduction. J. Clean. Prod. 2019, 239, 117990. [Google Scholar] [CrossRef]
- Fenner, A.E.; Kibert, C.J.; Li, J.; Razkenari, M.A.; Hakim, H.; Lu, X.; Kouhirostami, M.; Sam, M. Embodied, operation, and commuting emissions: A case study comparing the carbon hotspots of an educational building. J. Clean. Prod. 2020, 268, 122081. [Google Scholar] [CrossRef]
- Yongtao, L.; Chao, H.; Xiuqin, M.; Fankun, W. Co-benefit Research on Energy Efficiency Reforming Project of District Heating System. Energy Procedia 2011, 5, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Proszak-Miąsik, D.; Rabczak, S. Methods for reducing low emissions from heating devices in single- family housing. E3S Web Conf. 2018, 45, 00069. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland. Energies 2020, 13, 454. [Google Scholar] [CrossRef] [Green Version]
- Raczyński, M.; Rutkowski, R. How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland. Energies 2020, 13, 5449. [Google Scholar] [CrossRef]
- Borys, G. Selected directions of increasing efficiency in supporting thermomodernization in buildings from public funding. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2015. [Google Scholar] [CrossRef]
- Rey-Hernández, J.; Velasco-Gómez, E.; Tejero-González, A.; Rey-Martínez, F. Energy Analysis at a Near Zero Energy Building. A Case-Study in Spain. Energies 2018, 11, 857. [Google Scholar] [CrossRef] [Green Version]
- Marrone, P.; Gori, P.; Asdrubali, F.; Evangelisti, L.; Calcagnini, L.; Grazieschi, G. Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting. Energies 2018, 11, 649. [Google Scholar] [CrossRef] [Green Version]
- Guizzardi, M.; Carmeliet, J.; Derome, D. Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls. Constr. Build. Mater. 2015, 99, 159–168. [Google Scholar] [CrossRef]
- Dylewski, R. Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost. Energies 2019, 12, 3415. [Google Scholar] [CrossRef] [Green Version]
- Dylewski, R.; Adamczyk, J. Impact of the Degree Days of the Heating Period on Economically and Ecologically Optimal Thermal Insulation Thickness. Energies 2020, 14, 97. [Google Scholar] [CrossRef]
- Oregi, X.; Hernández, R.J.; Hernandez, P. Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach. Sustainability 2020, 12, 3914. [Google Scholar] [CrossRef]
- Dobrzycki, A.; Kurz, D.; Mikulski, S.; Wodnicki, G. Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland. Energies 2020, 13, 2549. [Google Scholar] [CrossRef]
- Ramczyk, M. Legal bases and economic conditions of applying renewable energy resources in construction industry. MATEC Web Conf. 2018, 174, 04004. [Google Scholar] [CrossRef]
- Kozik, R.; Karasińska-Jaśkowiec, I. Green public procurement—legal base and instruments supporting sustainable development in the construction industry in Poland. E3S Web Conf. 2016, 10, 00044. [Google Scholar] [CrossRef] [Green Version]
- Dyrektywa 5 Parlamentu Europejskiego i Rady 2005/32/WE z Dnia 6 Lipca 2005. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32005L0032&from=en (accessed on 30 July 2021).
- Rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 305/2011 z Dnia 9 Marca 2011 r. Ustanawiające Zharmonizowane Warunki Wprowadzania do Obrotu Wyrobów Budowlanych i Uchylające Dyrektywę Rady 89/106/EWG. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02011R0305-20140616&qid=1576663491684&from=EN (accessed on 30 July 2021).
- Dyrektywa Parlamentu Europejskiego i Rady 2009/125/WE z Dnia 21 Października 2009 r. Ustanawiająca Ogólne Zasady Ustalania Wymogów Dotyczących Ekoprojektu Dla Produktów Związanych z Energią. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32009L0125&from=ES (accessed on 30 July 2021).
- Dyrektywa Parlamentu Europejskiego i Rady 2010/30/UE z Dnia 19 Maja 2010 r. w Sprawie Wskazania Poprzez Etykietowanie Oraz Standardowe Informacje o Produkcie. Zużycia Energii Oraz Innych Zasobów Przez Produkty Związane z Energią. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=OJ:L:2010:153:FULL&from=NL (accessed on 30 July 2021).
- Commission of the European Communities. Green Paper—A European Strategy for Sustainable, Competitive and Secure Energy; Official Journal of the European Union: Brussels, Belgium, 2006. [Google Scholar]
- Życzyńska, A.; Cholewa, T. The Profitability Analysis Of Enhancement Of Parameters Of The Thermal Insulation Of Building Partitions. Arch. Civ. Eng. 2014, 60, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Życzyńska, A.; Cholewa, T. The modifications to the requirements on energy savings and thermal insulation of buildings in Poland in the years 1974–2021. Bud. i Archit. 2015, 14, 145–154. [Google Scholar] [CrossRef]
- Basinska, M.; Koczyk, H.; Kosmowski, A. Assessment of Thermo Modernization Using the Global Cost Method. Energy Procedia 2015, 78, 2040–2045. [Google Scholar] [CrossRef] [Green Version]
- Basińska, M.; Kaczorek, D.; Koczyk, H. Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method. Energies 2020, 13, 1433. [Google Scholar] [CrossRef] [Green Version]
- Basińska, M.; Koczyk, H. Analysis of the possibilities to achieve the low energy residential buildings standards. Technol. Econ. Dev. Econ. 2016, 22, 830–849. [Google Scholar] [CrossRef]
- Sobczyk, W.; Sapa, K. Energy balance in a passive solar building. An attempt at economic assessment. E3S Web Conf. 2016, 10, 00086. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Siwek, K. Energy audit of the residential building. J. Mech. Energy Eng. 2018, 2, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Hałacz, J.; Skotnicka-Siepsiak, A.; Neugebauer, M. Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses. Energies 2020, 13, 1224. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R. Efektywność energetyczna w aspekcie innowacyjnych systemów kominowych. Gaz Woda I Tech. Sanit. 2020, 1, 20–23. [Google Scholar] [CrossRef]
- Dylewski, R.; Adamczyk, J. The environmental impacts of thermal insulation of buildings including the categories of damage: A Polish case study. J. Clean. Prod. 2016, 137, 878–887. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J.; Gumińska, A.; Baran, Ł.; Barwa, M.; Czerw, K.; Gowik, P.; Makselan, K.; Potyka, K.; Psikuta, A. Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies 2020, 13, 2740. [Google Scholar] [CrossRef]
- Michalak, P.; Szczotka, K.; Szymiczek, J. Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building. Energies 2021, 14, 1973. [Google Scholar] [CrossRef]
- Jędrzejuk, H.; Dybiński, O. The Influence of a Heating System Control Program and Thermal Mass of External Walls on the Internal Comfort in the Polish Climate. Energy Procedia 2015, 78, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Lis, P. Estimated potential for energy savings in heating residential buildings in Poland. E3S Web Conf. 2018, 49, 00068. [Google Scholar] [CrossRef] [Green Version]
- Van Gulck, L.; Van de Putte, S.; Delghust, M.; Van Den Bossche, N.; Steeman, M. Environmental and financial assessment of façade renovations designed for change: Developing optimal scenarios for apartment buildings in Flanders. Build. Environ. 2020, 183, 107178. [Google Scholar] [CrossRef]
- Życzyńska, A.; Suchorab, Z.; Kočí, J.; Černý, R. Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland. Energies 2020, 13, 2449. [Google Scholar] [CrossRef]
- Dołęga, W. Selected aspects of national economy energy efficiency. Polityka Energ. Energy Policy J. 2019, 22, 19–32. [Google Scholar] [CrossRef]
- Jezierski, W.; Sadowska, B.; Pawłowski, K. Impact of Changes in the Required Thermal Insulation of Building Envelope on Energy Demand, Heating Costs, Emissions, and Temperature in Buildings. Energies 2020, 14, 56. [Google Scholar] [CrossRef]
- Firląg, S.; Piasecki, M. NZEB Renovation Definition in a Heating Dominated Climate: Case Study of Poland. Appl. Sci. 2018, 8, 1605. [Google Scholar] [CrossRef] [Green Version]
- Firląg, S. Cost-Optimal Plus Energy Building in a Cold Climate. Energies 2019, 12, 3841. [Google Scholar] [CrossRef] [Green Version]
- Blaszczok, M.; Baranowski, A. Thermal improvment in residental buildings in veiew of the indoor air quality–Case study for polish dwelling. Archit. Civ. Eng. Environ. 2018, 11, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Gładyszewska-Fiedoruk, K.; Krawczyk, D.A. The possibilities of energy consumption reduction and a maintenance of indoor air quality in doctor’s offices located in north-eastern Poland. Energy Build. 2014, 85, 235–245. [Google Scholar] [CrossRef]
- Krawczyk, D.A. Analysis of Energy Consumption for Heating in a Residential House in Poland. Energy Procedia 2016, 95, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, D.A. Theoretical and real effect of the school’s thermal modernization—A case study. Energy Build. 2014, 81, 30–37. [Google Scholar] [CrossRef]
- Michalak, P. The development and validation of the linear time varying Simulink-based model for the dynamic simulation of the thermal performance of buildings. Energy Build. 2017, 141, 333–340. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Szymańska, D. Modernisation of Public Buildings in Polish Towns and the Concept of Sustainable Building. Quaest. Geogr. 2014, 33, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, B. Effects of Deep Thermal Modernization and Use of Renewable Energy in Public Buildings in North-Eastern Poland. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2018. [Google Scholar]
- Orzechowski, T.; Orzechowski, M. Energy savings due to building insulation of different thickness. E3S Web Conf. 2017, 14, 01030. [Google Scholar] [CrossRef] [Green Version]
- Khanam, T.; Rahman, A.; Mola-Yudego, B. Renewable energy and wood fuel productions in the Nordic region: Can it be changed? J. Clean. Prod. 2020, 276, 123547. [Google Scholar] [CrossRef]
- Nilsson, L.J.; Johansson, B.; Åstrand, K.; Ericsson, K.; Svenningsson, P.; Börjesson, P.; Neij, L. Seeing the wood for the trees: 25 years of renewable energy policy in Sweden. Energy Sustain. Dev. 2004, 8, 67–81. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Mabee, W. Wood: A renewable source of energy. Wood Energy Dev. Econ. Resour. Manag. Econ. Policy 2014, 21–51. [Google Scholar] [CrossRef]
- Maia, M.; Morais, R.; Silva, A. Application of the factor method to the service life prediction of window frames. Eng. Fail. Anal. 2020, 109, 104245. [Google Scholar] [CrossRef]
- Souviron, J.; van Moeseke, G.; Khan, A.Z. Analysing the environmental impact of windows: A review. Build. Environ. 2019, 161, 106268. [Google Scholar] [CrossRef]
- Woroniak, G.; Piotrowska-Woroniak, J. Effects of pollution reduction and energy consumption reduction in small churches in Drohiczyn community. Energy Build. 2014, 72, 51–61. [Google Scholar] [CrossRef]
- Alsabry, A. Possibilities of decreasing energy consumption through thermal upgrading in selected buildings in Poland case study: The town of Zielona Góra. Energy Build. 2016, 130, 811–820. [Google Scholar] [CrossRef]
- Sekki, T.; Airaksinen, M.; Saari, A. Effect of energy measures on the values of energy efficiency indicators in Finnish daycare and school buildings. Energy Build. 2017, 139, 124–132. [Google Scholar] [CrossRef]
- Dias Pereira, L.; Raimondo, D.; Corgnati, S.P.; Gameiro da Silva, M. Energy consumption in schools—A review paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Zidianakis, G. Upgrading Energy Efficiency For School BuildingsIn Greece. Procedia Environ. Sci. 2017, 38, 248–255. [Google Scholar] [CrossRef]
- Brandão de Vasconcelos, A.; Pinheiro, M.D.; Manso, A.; Cabaço, A. EPBD cost-optimal methodology: Application to the thermal rehabilitation of the building envelope of a Portuguese residential reference building. Energy Build. 2016, 111, 12–25. [Google Scholar] [CrossRef]
- Berardi, U.; Manca, M.; Casaldaliga, P.; Pich-Aguilera, F. From high-energy demands to nZEB: The retrofit of a school in Catalonia, Spain. Energy Procedia 2017, 140, 141–150. [Google Scholar] [CrossRef]
- Ferrari, S.; Romeo, C. Retrofitting under protection constraints according to the nearly Zero Energy Building (nZEB) target: The case of an Italian cultural heritage’s school building. Energy Procedia 2017, 140, 495–505. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Radziszewska-Zielina, E.; Orlik-Kożdoń, B.; Steidl, T.; Tatara, T. Analysis of the Thermal Retrofitting Potential of the External Walls of Podhale’s Historical Timber Buildings in the Aspect of the Non-Deterioration of Their Technical Condition. Energies 2020, 13, 4610. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M. Efektywność energetyczna oraz niska emisja w krajowych i regionalnych uwarunkowaniach prawnych. Mater. Bud. 2016, 1, 22–24. [Google Scholar] [CrossRef]
- Garriga, S.M.; Dabbagh, M.; Krarti, M. Optimal carbon-neutral retrofit of residential communities in Barcelona, Spain. Energy Build. 2020, 208, 109651. [Google Scholar] [CrossRef]
- Ortiz, J.; Fonseca i Casas, A.; Salom, J.; Garrido Soriano, N.; Fonseca i Casas, P. Cost-effective analysis for selecting energy efficiency measures for refurbishment of residential buildings in Catalonia. Energy Build. 2016, 128, 442–457. [Google Scholar] [CrossRef] [Green Version]
- Mequignon, M.; Ait Haddou, H.; Thellier, F.; Bonhomme, M. Greenhouse gases and building lifetimes. Build. Environ. 2013, 68, 77–86. [Google Scholar] [CrossRef]
- Sartori, T.; Calmon, J.L. Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighbourhood dwellings. J. Build. Eng. 2019, 21, 158–172. [Google Scholar] [CrossRef]
- Maslesa, E.; Jensen, P.A.; Birkved, M. Indicators for quantifying environmental building performance: A systematic literature review. J. Build. Eng. 2018, 19, 552–560. [Google Scholar] [CrossRef]
- Goggins, J.; Moran, P.; Armstrong, A.; Hajdukiewicz, M. Lifecycle environmental and economic performance of nearly zero energy buildings (NZEB) in Ireland. Energy Build. 2016, 116, 622–637. [Google Scholar] [CrossRef] [Green Version]
- Charvátová, H.; Procházka, A.; Zálešák, M. Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material. Energies 2020, 13, 6065. [Google Scholar] [CrossRef]
- Arumägi, E.; Kalamees, T. Cost and Energy Reduction of a New nZEB Wooden Building. Energies 2020, 13, 3570. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M.; Badida, M.; Moravec, M.; Dzuro, T.; Vranay, F. Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber. Energies 2020, 13, 5974. [Google Scholar] [CrossRef]
- Bednarz, Ł.; Opalka, P.; Górski, A.; Wojciechowska, G. Analysis of the Condition of Damaged Vaults after a Construction Disaster in a Historic Church. Key Eng. Mater. 2019, 817, 613–620. [Google Scholar] [CrossRef]
- Drygala, I.; Dulinska, J.; Bednarz, Ł.; Jasienko, J. Numerical evaluation of seismic-induced damages in masonry elements of historical arch viaduct. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012006. [Google Scholar] [CrossRef]
- Bednarz, Ł.; Jasieńko, J. The analysis of the strains and stresses of the reinforced brick vaults. In Structural Analysis of Historic Construction; Taylor & Francis Group: London, UK, 2008; pp. 357–367. [Google Scholar]
- Bajno, D.; Bednarz, Ł.; Nowak, T. Problems Relating to Assessment, Repair and Restoration of Wooden Roof Structures in Historic Buildings, as Exemplified by Two Case Studies in Southern Poland. Adv. Mater. Res. 2013, 778, 888–894. [Google Scholar] [CrossRef]
- Jasieńko, J.; Nowak, T.; Bednarz, Ł. Wrocław University’s Leopoldinum Auditorium—Tests of Its Ceiling and a Conservation and Strengthening Concept. Adv. Mater. Res. 2010, 133–134, 265–270. [Google Scholar] [CrossRef]
- Bednarz, Ł.J.; Jasieńko, J.; Nowak, T.P. Test Monitoring of the Centennial Hall’s Dome, Wroclaw (Poland). In Proceedings of the SPIE Optical Metrology, Munich, Germany, 1 July 2015; p. 5270C. [Google Scholar]
- Bednarz, L.; Bajno, D.; Matkowski, Z.; Skrzypczak, I.; Leśniak, A. Elements of Pathway for Quick and Reliable Health Monitoring of Concrete Behavior in Cable Post-Tensioned Concrete Girders. Materials 2021, 14, 1503. [Google Scholar] [CrossRef]
- Menzel, C.A.; Heinzerling, F. Der Steinbau. (Der Praktische Maurer). Handbuch für Architekten, Bauhandwerker und Bau-Schüler; Verlag von J.J.: Fulda und Leipzig, Arnd: Leipzig, Germany, 1893. [Google Scholar]
- Bajno, D.; Grzybowska, A.; Tews, R. Unconscious decisions causing a failure condition of the 19th century brick ceiling. In Proceedings of the MATEC Web of Conferences, Prague, Czech Republic, 26 June 2018; Volume 174. [Google Scholar]
- Bajno, D. Ventilation as a particular safety element in housing development. In Proceedings of the Monografia Rudolf Kania Opole, ; Polish Engineering Association (NOT): Vienna, Austria, 2011; pp. 173–180. [Google Scholar]
- Bajno, D.; Bednarz, L.; Matkowski, Z.; Raszczuk, K. Monitoring of Thermal and Moisture Processes in Various Types of External Historical Walls. Materials 2020, 13, 505. [Google Scholar] [CrossRef] [Green Version]
- Bajno, D.; Bednarz, Ł.; Grzybowska, A.; Tews, R. Analysis and Monitoring Methodology of the Wooden Structure—Historic Military Architecture; Rilem Bookseries; Springer: New York NY, USA, 2019; Volume 18. [Google Scholar]
- Bajno, D.; Grzybowska, A.; Tews, R.; Bednarz, Ł. Back to the Past—The History and Current Modernisations of Kleinische Decke Ceiling; Rilem Bookseries; Springer: New York, NY, USA, 2019; Volume 18. [Google Scholar]
- PN-EN ISO 13788:2003 Cieplno-Wilgotnościowe Właściwości Komponentów Budowlanych i Elementów Budynku. Temperatura Powierzchni Wewnętrznej Konieczna do Uniknięcia Krytycznej Wilgotności Powierzchni i Kondensacja Międzywarstwowa. Metody Obliczania 2003. Available online: https://sklep.pkn.pl/pn-en-iso-13788-2003p.html (accessed on 30 July 2021).
- PN-D-94021:2013-10 Tarcica Konstrukcyjna Iglasta Sortowana Metodami Wytrzymałościowymi 2013. Available online: http://normy.ekoinfonet.pl/ics.php?ic=79.040 (accessed on 30 July 2021).
- PN-EN 1995-1-1:2010 Eurokod 5-Projektowanie Konstrukcji Drewnianych—Część 1-1: Postanowienia ogólne—Reguły Ogólne i Reguły Dotyczące Budynków 2010. Available online: https://sklep.pkn.pl/pn-en-1995-1-1-2010p.html (accessed on 30 July 2021).
- Adamczak, R. Wykorzystanie inteligentnych baz danych w budownictwie mostowym. ACTA Sci. Pol.—Archit. Bud. 2017, 16, 129–135. [Google Scholar] [CrossRef]
- Żurada, J.; Barski, M.; Jędruch, W. Sztuczne Sieci Neuronowe; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1996; Volume 1, pp. 16–19. [Google Scholar]
- Osowski, S. Sztuczne sieci neuronowe-Podstawowe struktury sieciowe i algorytmy ucza̧ce. Prz. Elektrotechniczny 2009, 85, 1–8. [Google Scholar]
- Ochmański, M.; Bzówka, J. Wybrane przykłady zastosowań sztucznych sieci neuronowych w geotechnice. Civ. Environ. Eng. 2013, 4, 287–294. [Google Scholar]
- Drobina, R.; Grecka, A.; Lewandowski, S. Sztuczne sieci neuronowe i kierunki ich zastosowań w przemyśle. Podstawowe rodzaje sztucznych sieci neuronowych. Przegląd Włókienniczy—Włókno Odzież Skóra 2016, 1, 28–33. [Google Scholar] [CrossRef]
- Korbicz, J. Sztuczne sieci neuronowe i ich zastosowanie w elektrotechnice i energetyce. Prz. Elektrotechniczny 2009, 85, 194–200. [Google Scholar]
- Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M. Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog. Nucl. Energy 2016, 89, 69–77. [Google Scholar] [CrossRef]
- Leśniak, A. Wspomaganie Decyzji Wykonawcy Budowlanego Z Zastosowaniem Sztucznej Inteligencji. J. Civ. Eng. Environ. Archit. 2017, 63, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, S. Sztuczne sieci neuronowe i kierunki ich zastosowań w przemyśle. Kierunki zastosowań sztucznych sieci neuronowych we włókiennictwie wykorzystywane przy klasyfikacji błędów w płaskich wyrobach włókienniczych i użytkowaniu odzieży. Przegląd Włókienniczy—Włókno Odzież Skóra 2016, 1, 34–39. [Google Scholar] [CrossRef]
- Tadeusiewicz, R. Sieci neuronowe. Postępy Fiz. 1994, 45, 215–236. [Google Scholar]
- Krawiec, K.; Stefanowski, J. Uczenie Maszynowe i Sieci Neuronowe; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 2003; Volume 3. [Google Scholar]
- Tadeusiewicz, R. O celowości zastosowania sieci neuronowych w problemach związanych z elektrotechniką. Prz. Elektrotechniczny 2009, 85, 200–211. [Google Scholar]
- Knyziak, P. Sztuczne sieci neuronowe w oszacowaniu zużycia technicznego bydynków mieszkalnych. In Theoretical Foundation of Civil Engineering; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 8 April 2008; Volume 16. [Google Scholar]
- Bajno, D.; Bednarz, Ł.; Grzybowska, A. The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption. Energies 2021, 14, 4720. [Google Scholar] [CrossRef]
- Szacowanie Współczynników Pochłaniania Dźwięku Perforowanych Paneli Drewnianych za Pomocą Sztucznych Sieci Neuronowych-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0003682X08000467 (accessed on 3 August 2021).
- Lin, M.D.; Tsai, K.T.; Su, B.S. Estimating the sound absorption coefficients of perforated wooden panels by using artificial neural networks. Appl. Acoust. 2009, 70, 31–40. [Google Scholar] [CrossRef]
- Aliabadi, M.; Golmohammadi, R.; Mansoorizadeh, M.; Khotanlou, H.; Ohadi Hamadani, A. An empirical technique for predicting noise exposure level in the typical embroidery workrooms using artificial neural networks. Appl. Acoust. 2013, 74, 364–374. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yang, S.S.; Kang, Y.J. Estimation of sound absorption coefficient of layered fibrous material using artificial neural networks. Appl. Acoust. 2020, 169, 107476. [Google Scholar] [CrossRef]
- Stack, J.R.; Harley, R.G.; Springer, P.; Mahaffey, J.A. Estimation of wooden cross-arm integrity using artificial neural networks and laser vibrometry. IEEE Trans. Power Deliv. 2003, 18, 1539–1544. [Google Scholar] [CrossRef]
- Cotana, F.; Pisello, A.L.; Moretti, E.; Buratti, C. Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Build. Environ. 2014, 81, 92–102. [Google Scholar] [CrossRef]
- De Franca, C.A.; Gonzaga, A.; Slaets, A.F.F. Classification of wooden boards by neural networks and fuzzy rules. In Proceedings of the II Workshop on Cybernetic Vision, Sao Carlos, Brazil, 9–11 December 1996; pp. 190–195. [Google Scholar]
- Marks, M. Wykorzystanie metod uczenia maszynowego do rozpoznawania związków pomiędzy składem betonu modyfikowanego dodatkami popiołowymi a jego właściwościami. Drogi i Mosty 2010, 3, 39–54. [Google Scholar]
- Tadeusiewicz, R.; Szaleniec, M. Leksykon Sieci Neuronowych; Projekt Nauka: Wrocław, Poland, 2015; ISBN 9788363270100. [Google Scholar]
- Tadeusiewicz, R. Wprowadzenie do Sieci Neuronowych; StatSoft Polska: Kraków, Poland, 2001. [Google Scholar]
- Neeraja, D.; Swaroop, G. Prediction of compressive strength of concrete using artificial neural networks. Res. J. Pharm. Technol. 2017, 10, 35–40. [Google Scholar] [CrossRef]
- PN-EN 1995-1-2:2008 Eurokod 5: Projektowanie Konstrukcji Drewnianych—Część 1–2: Postanowienia Ogólne—Projektowanie Konstrukcji z Uwagi na Warunki Pożarowe 2008. Available online: https://sklep.pkn.pl/pn-en-1995-1-2-2008p.html (accessed on 30 July 2021).
- PN-B-03150:1964 Konstrukcje Drewniane—Obliczenia Statyczne i Projektowanie 1964. Available online: https://sklep.pkn.pl/pn-b-03150-1964p.html (accessed on 30 July 2021).
- PN-B-03150-02:1981 Konstrukcje z Drewna i Materiałów Drewnopochodnych-Obliczenia Statyczne i Projektowanie—Konstrukcje 1981. Available online: https://sklep.pkn.pl/pn-b-03150-02-1981p.html (accessed on 30 July 2021).
- PN-B-03150-00:1981 Konstrukcje z Drewna i Materiałów Drewnopochodnych. Obliczenia Statyczne i Projektowanie—Materiały 1981. Available online: https://sklep.pkn.pl/pn-b-03150-2000p.html (accessed on 30 July 2021).
- Eurokod 1-Oddziaływania na Konstrukcje—Część 1–3: Oddziaływania Ogólne—Obciążenie Śniegiem. Available online: https://sklep.pkn.pl/pn-en-1991-1-3-2005p.html (accessed on 30 July 2021).
- Eurokod 1: Oddziaływania na Konstrukcje—Część 1–4: Oddziaływania Ogólne—Oddziaływania Wiatru. Available online: https://sklep.pkn.pl/pn-en-1991-1-4-2005e.html (accessed on 30 July 2021).
No. | Type of Elment | Primary Dimensions | Primary Cross-Section | Dimensions Actual—Effective | Cross-Section Actual—Effective | Reduction in the Field Section |
---|---|---|---|---|---|---|
[mm × mm]. | [mm2]. | [mm × mm]. | [mm2]. | [%] | ||
1 | beam 1 | 230 × 200 | 46,000 | 210 × 180 | 37,800 | 18 |
2 | rafter | 160 × 130 | 20,800 | 150 × 120 | 18,000 | 13 |
3 | ticks | 160 × 130 | 20,800 | 150 × 120 | 18,000 | 13 |
4 | Bolt 1 | 160 × 130 | 20,800 | 150 × 120 | 18,000 | 13 |
5 | Bolt 2 | 220 × 200 | 44,000 | 200 × 180 | 36,000 | 18 |
6 | pole | 220 × 200 | 44,000 | 200 × 180 | 36,000 | 18 |
7 | foundation | 240 × 200 | 48,000 | 225 × 180 | 40,500 | 16 |
8 | beam 2 | 240 × 200 | 48,000 | 225 × 180 | 40,500 | 16 |
Element No | Type of Element | Primary Dimensions | Primary Cross-section | Primary Flexural Strength Index | Actual Dimensions—Effective | Effective Cross-Section | Actual Flexural Strength Index | Change in Cross-Sectional Area | Change in Flexural Strength Index |
---|---|---|---|---|---|---|---|---|---|
[–] | - | [mm × mm]. | [mm2]. | [mm3]. | [mm × mm]. | [mm2]. | [mm3]. | [%] | [%] |
1 | pole | 280 × 300 | 84,000 | 4.20 × 106 | 270 × 280 | 75,600 | 3.53 × 106 | 90 | 84 |
2 | pole | 300 × 280 | 84,000 | 3.92 × 106 | 290 × 270 | 78,300 | 3.52 × 106 | 93 | 90 |
3 | pole | 280 × 300 | 84,000 | 4.20 × 106 | 250 × 280 | 70,000 | 3.27 × 106 | 83 | 78 |
4 | foundation | 150 × 150 | 22,500 | 5.63 × 105 | 110 × 150 | 16,500 | 4.13 × 105 | 73 | 73 |
5 | pole | 160 × 160 | 25,600 | 6.83 × 105 | 145 × 140 | 20,300 | 4.74 × 105 | 79 | 69 |
6 | foundation | 150 × 150 | 22,500 | 5.63 × 105 | 145 × 140 | 20,300 | 4.74 × 105 | 90 | 84 |
7 * | - | - | - | - | - | - | - | - | - |
8 | pole | 150 × 150 | 22,500 | 5.63 × 105 | 110 × 120 | 13,200 | 2.64 × 105 | 59 | 47 |
9 | foundation | 240 × 200 | 48,000 | 1.60 × 106 | 225 × 180 | 40,500 | 1.22 × 106 | 84 | 76 |
10 | pole | 220 × 200 | 44,000 | 1.47 × 106 | 200 × 180 | 36,000 | 1.08 × 106 | 82 | 74 |
11 | pole | 160 × 160 | 25,600 | 6.83 × 105 | 120 × 140 | 16,800 | 3.92 × 105 | 66 | 57 |
12 | pole | 160 × 160 | 25,600 | 6.83 × 105 | 140 × 140 | 19,600 | 4.57 × 105 | 77 | 67 |
13 | foundation | 250 × 200 | 50,000 | 1.67 × 106 | 210 × 170 | 35,700 | 1.01 × 106 | 71 | 61 |
14 | foundation | 250 × 200 | 50,000 | 1.67 × 106 | 200 × 170 | 34,000 | 9.63 × 105 | 68 | 58 |
15 | floor beam | 230 × 200 | 46,000 | 1.53 × 106 | 210 × 180 | 37,800 | 1.13 × 106 | 82 | 74 |
16 | pole | 200 × 160 | 32,000 | 8.53 × 105 | 170 × 140 | 23,800 | 5.55 × 105 | 74 | 65 |
17 | rafter | 160 × 130 | 20,800 | 4.51 × 105 | 150 × 120 | 18,000 | 3.60 × 105 | 87 | 80 |
18 | pole | 170 × 150 | 25,500 | 6.38 × 105 | 165 × 145 | 23,925 | 5.78 × 105 | 94 | 91 |
19 | purlin | 160 × 170 | 27,200 | 7.71 × 105 | 145 × 155 | 22,475 | 5.81 × 105 | 83 | 75 |
Element No. | Type of Element | Type of Work | Primary Dimensions | Primary Cross-Section | Primary Flexural Strength Index | Actual Dimensions-Effective | Effective Cross-Section | Actual Flexural Strength Index | Reduction in the Cross-Sectional Area | Reduction in Flexural Strength Index |
---|---|---|---|---|---|---|---|---|---|---|
[mm × mm] | [mm2] | [mm3] | [mm × mm] | [mm2] | [mm3] | [%] | [%] | |||
1 | pole | eccentric compression along fibres | 280 × 300 | 84,000 | 4,200,000 | 270 × 280 | 75,600 | 3,528,000 | 10 | 16 |
2 | pole | eccentric compression along fibres | 300 × 280 | 84,000 | 3,920,000 | 290 × 270 | 78,300 | 3,523,500 | 7 | 10 |
3 | pole | eccentric compression along fibres | 280 × 300 | 84,000 | 4,200,000 | 250 × 280 | 70,000 | 3,266,666.67 | 17 | 22 |
4 | foundation | eccentric compression across fibres | 150 × 150 | 22,500 | 562,500 | 110 × 150 | 16,500 | 412,500 | 27 | 27 |
269 | shotgun | compression with bending along fibres | 160 × 130 | 20,800 | 554,666.67 | 150 × 120 | 18,000 | 360,000 | 13 | 35 |
270 | shotgun | compression with bending along fibres | 220 × 200 | 44,000 | 1,466,666.67 | 200 × 180 | 36,000 | 1,080,000 | 18 | 26 |
271 | pole | eccentric compression along fibres | 220 × 200 | 44,000 | 1,466,666.67 | 200 × 180 | 36,000 | 1,080,000 | 18 | 26 |
272 | foundation | eccentric compression across fibres | 240 × 200 | 48,000 | 1,600,000 | 225 × 180 | 40,500 | 1,215,000 | 16 | 24 |
273 | beam | bending in compression | 240 × 200 | 48,000 | 1,600,000 | 225 × 180 | 40,500 | 1,215,000 | 16 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajno, D.; Grzybowska, A.; Bednarz, Ł. Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies 2021, 14, 5975. https://doi.org/10.3390/en14185975
Bajno D, Grzybowska A, Bednarz Ł. Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies. 2021; 14(18):5975. https://doi.org/10.3390/en14185975
Chicago/Turabian StyleBajno, Dariusz, Agnieszka Grzybowska, and Łukasz Bednarz. 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development" Energies 14, no. 18: 5975. https://doi.org/10.3390/en14185975
APA StyleBajno, D., Grzybowska, A., & Bednarz, Ł. (2021). Old and Modern Wooden Buildings in the Context of Sustainable Development. Energies, 14(18), 5975. https://doi.org/10.3390/en14185975