Direct Reduction in Greenhouse Gases by Continuous Dry (CO2) Reforming of Methane over Ni-Containing SHS Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of SHS Catalysts
2.2. Characterisation
2.3. Catalytic Activity Studies
3. Results and Discussion
3.1. Characterisation of Catalysts
3.2. Catalytic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA World Energy Outlook. 2010. Available online: https://webstore.iea.org/world-energy-outlook-2010 (accessed on 10 September 2019).
- The Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/ (accessed on 11 March 2017).
- IPCC Review. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwwf.ru%2Fupload%2Fiblock%2F790%2Fipcc_review.pdf&clen=3866352&chunk=true (accessed on 25 January 2021).
- United States Environmental Protection Agency. Available online: https://www.epa.gov/gmi/importance-methane (accessed on 30 June 2021).
- Estifaee, P.; Haghighi, M.; Babaluo, A.A.; Rahemi, N.; Jafari, M.F. The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3-MgO nano-catalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases. J. Power Sources 2014, 257, 364–373. [Google Scholar] [CrossRef]
- Movasati, A.; Alavi, S.M.; Mazloom, G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel 2019, 236, 1254–1262. [Google Scholar] [CrossRef]
- Adans, Y.F.; Ballarini, A.D.; Martins, A.R.; Coelho, R.E.; Carvalho, L.S. Performance of nickel supported on γ-alumina obtained by aluminum recycling for methane dry reforming. Catal. Lett. 2017, 147, 2057–2066. [Google Scholar] [CrossRef]
- Ali, S.; Khader, M.M.; Almarri, M.J.; Abdelmoneim, A.G. Ni-based nano-catalysts for the dry reforming of methane. Catal. Today 2020, 343, 26–37. [Google Scholar] [CrossRef]
- Larimi, S.; Alavi, S.M. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts. Int. J. Chem. Eng. Appl. 2012, 3, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, S.O.; Kapran, A.Y.; Orlyk, S.N.; Gubareni, E.V. Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts. J. Nat. Gas Chem. 2011, 20, 184–190. [Google Scholar] [CrossRef]
- Fidalgo, B.; Arenillas, A.; Menιndez, J.A. Synergetic effect of a mixture of activated carbon + Ni/Al2O3 used as catalysts for the CO2 reforming of CH4. Appl. Catal. A Gen. 2010, 390, 78–83. [Google Scholar] [CrossRef]
- Moniri, A.; Alavi, S.M.; Rezaei, M. Syngas production by combined carbon dioxide reforming and partial oxidation of methane over Ni/α-Al2O3 catalysts. J. Nat. Gas Chem. 2010, 19, 638–641. [Google Scholar] [CrossRef]
- Ni, J.; Chen, L.; Lin, J.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674–686. [Google Scholar] [CrossRef]
- Meshkani, F.; Rezaei, M. Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane. Int. J. Hydrogen Energy 2010, 35, 10295–10301. [Google Scholar] [CrossRef]
- Wang, N.; Chu, W.; Zhang, T.; Zhao, X.S. Manganese promoting effects on the Co–Ce–Zr–Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide. Chem. Eng. J. 2011, 170, 457–463. [Google Scholar] [CrossRef]
- Horváth, É.; Baán, K.; Varga, E.; Oszkó, A.; Vágó, Á.; Törő, M.; Erdőhelyi, A. Dry reforming of CH4 on Co/Al2O3 catalysts reduced at different temperatures. Catal. Today 2017, 281, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Özkara-Aydınoğlu, S.; Aksoylu, A.E. Carbon dioxide reforming of methane over Co-X/ZrO2 catalysts (X=La, Ce, Mn, Mg, K). Catal. Commun. 2010, 11, 1165–1170. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Zeaiter, J.; Kwapinski, W.; Leahy, J.J.; Ahmad, M.N. Eclectic trimetallic Ni-Co-Ru catalyst for the dry reforming of methane. Int. J. Hydrog. Energy 2020, 45, 17153–17163. [Google Scholar] [CrossRef]
- Turap, Y.; Wang, I.; Fu, T.; Wu, Y.; Wang, Y.; Wang, W. Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane. Int. J. Hydrog. Energy 2020, 45, 6538–6548. [Google Scholar] [CrossRef]
- Siang, T.J.; Singh, S.; Omoregbe, O.; Bach, L.G.; Phuc, N.H.H.; Vo, D.V.N. Hydrogen production from CH4 dry reforming over bimetallic Ni-Co/Al2O3 catalyst. J. Energy Inst. 2018, 91, 683–694. [Google Scholar] [CrossRef]
- Jalali, R.; Rezaei, M.; Nematollahi, B.; Baghalha, M. Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane. Renew. Energy 2020, 149, 1053–1067. [Google Scholar] [CrossRef]
- Wu, H.; Liu, H.; Yang, W.; He, D. Synergetic effect of Ni and Co in Ni–Co/SBA-15-CD catalysts and their catalytic performance in carbon dioxide reforming of methane to syngas. Catal. Sci. Technol. 2016, 6, 5631–5646. [Google Scholar] [CrossRef]
- Kim, W.Y.; Jang, J.S.; Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, J.S. Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Appl. Catal. A Gen. 2019, 575, 198–203. [Google Scholar] [CrossRef]
- Merzhanov, A.G. Worldwide evolution and present status of SHS as a branch of modern R&D. Int. J. Self-Propag. High-Temp. Synth. 1997, 6, 119–163. [Google Scholar]
- Xanthopoulou, G. Catalytic properties of the SHS products: Review. Adv. Sci. Technol. 2010, 63, 287–296. [Google Scholar] [CrossRef]
- Pramono, A.; Kommel, L.; Kollo, L.; Veinthal, R. The aluminum based composite produced by self propagating high temperature synthesis. Mater. Sci. (Medžg.) 2016, 22, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, G.; Thoda, O.; Roslyakov, S.; Steinman, A.; Kovalev, D.; Levashov, E.; Vekinis, G.; Sytschev, A.; Chroneos, A. Solution combustion synthesis of nano-catalysts with a hierarchical structure. J. Catal. 2018, 364, 112–124. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Zhuravlev, V.D.; Bamburov, V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Termodynamic aspects. Int. J. Self-Propag. High-Temp. Synth. 2016, 25, 139–148. [Google Scholar] [CrossRef]
- Thoda, O.; Xanthopoulou, G.; Vekinis, G.; Chroneos, A. The effect of the precursor solution’s pretreatment on the properties and microstructure of the SCS final nanomaterials. Appl. Sci. 2019, 9, 1200. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulou, G.G.; Vekinis, G.A. Catalytic pyrolysis of naphtha on the SHS catalysts. Eurasian Chem.-Technol. J. 2010, 12, 17–21. [Google Scholar] [CrossRef]
- Bera, P. Solution combustion synthesis as a novel route to preparation of catalysts. Int. J. Self-Propag. High-Temp. Synth. 2019, 28, 77–109. [Google Scholar] [CrossRef]
- Xanthopoulou, G.; Thoda, O.; Boukos, N.; Krishnamurthy, S.; Dey, A.; Roslyakov, S.; Vekinis, G.; Chroneos, A.; Levashov, E. Effects of precursor concentration in solvent and nanomaterials room temperature aging on the growth morphology and surface characteristics of Ni–NiO nanocatalysts produced by dendrites combustion during SCS. Appl. Sci. 2019, 9, 4925. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulou, G. Some advanced applications of SHS: An Overview. Int. J. Self-Propag. High-Temp. Synth. 2011, 20, 269–272. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, W.; Yang, X. Computational design of SCS nickel pincer complexes for the asymmetric transfer hydrogenation of 1-acetonaphthone. Catalysts 2019, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Tungatarova, S.; Xanthopoulou, G.; Karanasios, K.; Baizhumanova, T.; Zhumabek, M.; Kaumenova, G. New composite materials prepared by solution combustion synthesis for catalytic reforming of methane. Chem. Eng. Trans. 2017, 61, 1921–1926. [Google Scholar] [CrossRef]
- Singsarothai, S.; Khanghamano, M.; Rachphet, V.; Niyomwas, S. Influence of CaO2 additives on the properties of Fe-WB-based composite lining deposited by centrifugal SHS on the inner surface of steel pipe. Int. J. Self-Propag. High-Temp. Synth. 2016, 25, 181–185. [Google Scholar] [CrossRef]
- Pino, L.; Vita, A.; Laganà, M.; Recupero, V. Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides. Appl. Catal. B Environ. 2014, 148–149, 91–105. [Google Scholar] [CrossRef]
- Postole, G.; Nguyen, T.-S.; Aouine, M.; Gélin, P.; Cardenas, L.; Piccolo, L. Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion. Appl. Catal. B Environ. 2015, 166–167, 580–591. [Google Scholar] [CrossRef]
- Vita, A.; Italiano, C.; Fabiano, C.; Laganà, M.; Pino, L. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO2 catalysts for biogas oxidative steam reforming. Mater. Chem. Phys. 2015, 163, 337–347. [Google Scholar] [CrossRef]
- Xanthopoulou, G.; Karanasios, K.; Tungatarova, S.; Baizhumanova, T.; Zhumabek, M.; Kaumenova, G.; Massalimova, B.; Shorayeva, K. Catalytic methane reforming into synthesis-gas over developed composite materials prepared by combustion synthesis. React. Kinet. Mech. Catal. 2019, 126, 645–661. [Google Scholar] [CrossRef]
- Karanasios, K.; Xanthopoulou, G.; Vekinis, G.; Zoumpoulakis, L. Co-Al-O catalysts produced by SHS method for CO2 reforming of CH4. Int. J. Self-Prop. High-Temp. Synth. 2014, 23, 221–229. [Google Scholar]
Name | Initial Batch Composition (wt%) | ||||
---|---|---|---|---|---|
1 Ni-Mn | 2 Ni-Mn | 3 Ni-Mn | 4 Ni-Mn | 5 Ni-Mn | |
MgO | 13.04 | 13.04 | 13.04 | 13.04 | 13.04 |
Al2O3 | 23.48 | 23.48 | 23.48 | 23.48 | 23.48 |
Mg (NO3)2 | 30.44 | 30.44 | 30.44 | 30.44 | 30.44 |
KMnO4 | 21.04 | 16.70 | 13.04 | 10.52 | 4.34 |
NiO | 0 | 4.34 | 8.00 | 10.52 | 16.70 |
Al | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Mg | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulou, G.; Varitis, S.; Zhumabek, M.; Karanasios, K.; Vekinis, G.; Tungatarova, S.A.; Baizhumanova, T.S. Direct Reduction in Greenhouse Gases by Continuous Dry (CO2) Reforming of Methane over Ni-Containing SHS Catalysts. Energies 2021, 14, 6078. https://doi.org/10.3390/en14196078
Xanthopoulou G, Varitis S, Zhumabek M, Karanasios K, Vekinis G, Tungatarova SA, Baizhumanova TS. Direct Reduction in Greenhouse Gases by Continuous Dry (CO2) Reforming of Methane over Ni-Containing SHS Catalysts. Energies. 2021; 14(19):6078. https://doi.org/10.3390/en14196078
Chicago/Turabian StyleXanthopoulou, Galina, Savvas Varitis, Manapkhan Zhumabek, Konstantinos Karanasios, George Vekinis, Svetlana A. Tungatarova, and Tolkyn S. Baizhumanova. 2021. "Direct Reduction in Greenhouse Gases by Continuous Dry (CO2) Reforming of Methane over Ni-Containing SHS Catalysts" Energies 14, no. 19: 6078. https://doi.org/10.3390/en14196078
APA StyleXanthopoulou, G., Varitis, S., Zhumabek, M., Karanasios, K., Vekinis, G., Tungatarova, S. A., & Baizhumanova, T. S. (2021). Direct Reduction in Greenhouse Gases by Continuous Dry (CO2) Reforming of Methane over Ni-Containing SHS Catalysts. Energies, 14(19), 6078. https://doi.org/10.3390/en14196078