A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Long Short-Term Memory Networks
2.2. Multi-Layer Perceptron
2.3. Influential Community Factors
2.3.1. Similarity
2.3.2. Statistical Causality
2.4. Problem Framing and Proposed Design
2.5. Case Study and Experiments
2.6. Performance Metrics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alamaniotis, M.; Ikonomopoulos, A.; Bargiotas, D.; Tsoukalas, L.; Alamaniotis, A. Day-ahead Electricity Price Forecasting using Optimized Multiple-Regression of Relevance Vector Machines. In Proceedings of the 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), Cagliari, Italy, 1–3 October 2012. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Bourbakis, N.; Tsoukalas, L. Genetic Optimal Regression of Relevance Vector Machines for Electricity Pricing Signal Forecasting in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 2997–3005. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Bargiotas, D.; Tsoukalas, L.H. Towards smart energy systems: Application of kernel machine regression for medium term electricity load forecasting. SpringerPlus 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.; Suh, D.; Otto, M.-O. Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach. Energies 2020, 13, 5885. [Google Scholar] [CrossRef]
- Mir, A.; Alghassab, M.; Ullah, K.; Khan, Z.; Lu, Y.; Imran, M. A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons. Sustainability 2020, 12, 5931. [Google Scholar] [CrossRef]
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Fuzzy Control System for Smart Energy Management in Residential Buildings Based on Environmental Data. Energies 2021, 14, 752. [Google Scholar] [CrossRef]
- Dalal, M.; Li, A.; Taori, R. Autoregressive Models: What Are They Good For? arXiv 2019, arXiv:1910.07737. [Google Scholar]
- Johnston, F.R.; Boyland, E.J.; Meadows, M.; Shale, E. Some properties of a simple moving average when applied to forecasting a time series. J. Oper. Res. Soc. 1999, 50, 1267–1271. [Google Scholar] [CrossRef]
- Advanced Time Series Analysis with ARMA and ARIMA, Medium. 2021. Available online: https://towardsdatascience.com/advanced-time-series-analysis-with-arma-and-arima-a7d9b589ed6d (accessed on 9 July 2021).
- Luetkepohl, H. Forecasting with VARMA Models. In Handbook of Economic Forecasting, 1st ed.; Elliott, G., Granger, C., Timmerman, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Chapter 6; Volume 1, pp. 287–325. [Google Scholar]
- Ostertagová, E.; Ostertag, O. Forecasting using simple exponential smoothing method. Acta Electrotech. et Inform. 2012, 12, 62–66. [Google Scholar] [CrossRef]
- Holt-Winters Exponential Smoothing, Medium. 2021. Available online: https://towardsdatascience.com/holt-winters-exponential-smoothing-d703072c0572 (accessed on 9 July 2021).
- An Overview of Time Series Forecasting Models Part 1: Classical Time Series Forecasting Models, Medium. 2021. Available online: https://shaileydash.medium.com/an-overview-of-time-series-forecasting-models-part-1-classical-time-series-forecasting-models-2d877de76e0f (accessed on 9 July 2021).
- Mitrea, C.A.; Lee, C.K.M.; Wu, Z. A Comparison between Neural Networks and Traditional Forecasting Methods: A Case Study. Int. J. Eng. Bus. Manag. 2009, 1, 11. [Google Scholar] [CrossRef]
- Shiblee, M.; Kalra, P.; Chandra, B. Time Series Prediction with Multilayer Perceptron (MLP): A New Generalized Error Based Approach. Adv. Neuro-Inf. Process. 2009, 37–44. [Google Scholar] [CrossRef]
- Khodabakhsh, A.; Ari, I.; Bakır, M.; Alagoz, S.M. Forecasting Multivariate Time-Series Data Using LSTM and Mini-Batches. In Proceedings of the 7th International Conference on Contemporary Issues in Data Science, Zanjan, Iran, 6–8 March 2019; Spinger: Cham, Switzerland, 2019; pp. 121–129. [Google Scholar] [CrossRef]
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A. Minutely Active Power Forecasting Models Using Neural Networks. Sustainability 2020, 12, 3177. [Google Scholar] [CrossRef] [Green Version]
- López de Prado, M. Overfitting: Causes and Solutions (Seminar Slides). 2020. Available online: http://dx.doi.org/10.2139/ssrn.3544431 (accessed on 9 July 2021).
- Jayalakshmi, N.; Shankar, R.; Subramaniam, U.; Baranilingesan, I.; Karthick, A.; Stalin, B.; Rahim, R.; Ghosh, A. Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting. Energies 2021, 14, 2404. [Google Scholar] [CrossRef]
- Dai, W.; Yoshigoe, K.; Parsley, W. Improving Data Quality Through Deep Learning and Statistical Models. Adv. Intell. Syst. Comput. 2017, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math. Probl. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef] [Green Version]
- Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M.K. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. Sustainability 2019, 11, 987. [Google Scholar] [CrossRef] [Green Version]
- Markovič, R.; Gosak, M.; Grubelnik, V.; Marhl, M.; Virtič, P. Data-driven classification of residential energy consumption patterns by means of functional connectivity networks. Appl. Energy 2019, 242, 506–515. [Google Scholar] [CrossRef]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Tian, Y.; Sehovac, L.; Grolinger, K. Similarity-Based Chained Transfer Learning for Energy Forecasting with Big Data. IEEE Access 2019, 7, 139895–139908. [Google Scholar] [CrossRef]
- Chen, T.-L.; Cheng, C.-H.; Liu, J.-W. A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1967–1987. [Google Scholar] [CrossRef]
- Boersma, K. Using Influencing Factors and Multilayer Perceptrons for Energy Demand Prediction. 2019. Available online: http://essay.utwente.nl/78789/ (accessed on 10 July 2021).
- Emamian, M.; Milimonfared, J.; Aghaei, M.; Hosseini, R. Solar Power Forecasting with Lstm Network Ensemble, Researchgate. 2019. Available online: https://www.researchgate.net/publication/337494650 (accessed on 10 July 2021).
- Guo, L.; Wang, L.; Chen, H. Electrical Load Forecasting Based on LSTM Neural Networks. BDECE 2019, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Lu, J.; Lang, J.; Peng, X.; Cheng, K.; Duan, S. Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network. Energies 2021, 14, 3086. [Google Scholar] [CrossRef]
- Understanding LSTM Networks-Colah’s blog, Colah.github.io. 2021. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 10 July 2021).
- An Introduction to Gradient Descent and Backpropagation, Medium. 2021. Available online: https://towardsdatascience.com/an-introduction-to-gradient-descent-and-backpropagation-81648bdb19b2 (accessed on 10 July 2021).
- Kamal, I.M.; Bae, H.; Sunghyun, S.; Yun, H. DERN: Deep Ensemble Learning Model for Short- and Long-Term Prediction of Baltic Dry Index. Appl. Sci. 2020, 10, 1504. [Google Scholar] [CrossRef] [Green Version]
- Ramchoun, H.; Idrissi, M.A.J.; Ghanou, Y.; Ettaouil, M. Multilayer Perceptron. In Proceedings of the 2nd international Conference on Big Data, Cloud and Applications, New York, NY, USA, 29–30 March 2017. [Google Scholar] [CrossRef]
- Wolpert, D. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Rohrhofer, F.; Saha, S.; Cataldo, S.; Geiger, B.; Linden, W.; Boeri, L. Importance of feature engineering and database selection in a machine learning model: A case study on carbon crystal structures. arXiv 2021, arXiv:2102.00191. [Google Scholar]
- Cassisi, C.; Montalto, P.; Aliotta, M.; Cannata, A.; Pulvirenti, A.C.A.A. Similarity Measures and Dimensionality Reduction Techniques for Time Series Data Mining. In Advances in Data Mining Knowledge Discovery and Applications; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Cuturi, M.; Blondel, M. Soft-DTW: A Differentiable Loss Function for Time-Series. arXiv 2017, arXiv:1703.01541. [Google Scholar]
- Time Series Similarity Using Dynamic Time Warping -Explained, Medium. 2021. Available online: https://medium.com/walmartglobaltech/time-series-similarity-using-dynamic-time-warping-explained-9d09119e48ec (accessed on 10 July 2021).
- Inferring Causality in Time Series Data, Medium. 2021. Available online: https://towardsdatascience.com/inferring-causality-in-time-series-data-b8b75fe52c46 (accessed on 10 July 2021).
- Amornbunchornvej, C.; Zheleva, E.; Berger-Wolf, T. Variable-Lag Granger Causality for Time Series Analysis. In Proceedings of the 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USA, 5–8 October 2019. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, J. Time Series Forecasting as Supervised Learning, Machine Learning Mastery. 2021. Available online: https://machinelearningmastery.com/time-series-forecasting-supervised-learning/ (accessed on 10 July 2021).
- Introduction to Early Stopping: An Effective Tool to Regularize Neural Nets, Medium. 2021. Available online: https://towardsdatascience.com/early-stopping-a-cool-strategy-to-regularize-neural-networks-bfdeca6d722e (accessed on 10 July 2021).
- Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019, arXiv:1912.06059. [Google Scholar]
- Brownlee, J. Stacking Ensemble Machine Learning with Python, Machine Learning Mastery. Available online: https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/ (accessed on 10 July 2021).
- Parraga-Alava, J.; Moncayo-Nacaza, J.D.; Revelo-Fuelagán, J.; Rosero-Montalvo, P.D.; Anaya-Isaza, A.; Peluffo-Ordóñez, D.H. A data set for electric power consumption forecasting based on socio-demographic features: Data from an area of southern Colombia. Data Brief 2020, 29, 105246. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Dimkonto/Client-Power-Consumption-Forecasting, GitHub. 2021. Available online: https://github.com/dimkonto/Client-Power-Consumption-Forecasting (accessed on 13 July 2021).
- Fürnkranz, J.; Chan, P.K.; Craw, S.; Sammut, C.; Uther, W.; Ratnaparkhi, A.; Jin, X.; Han, J.; Yang, Y.; Morik, K.; et al. Mean Absolute Error. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; p. 652. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Dudek, G. Pattern similarity-based methods for short-term load forecasting—Part 1: Principles. Appl. Soft Comput. 2015, 37, 277–287. [Google Scholar] [CrossRef]
- Cordova, J.; Sriram, L.M.K.; Kocatepe, A.; Zhou, Y.; Ozguven, E.E.; Arghandeh, R. Combined Electricity and Traffic Short-Term Load Forecasting Using Bundled Causality Engine. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3448–3458. [Google Scholar] [CrossRef]
- Parraga-Alava, J. PCSTCOL: Power Consumption Data from an Area of Southern Colombia. Mendeley Data 2020. [Google Scholar] [CrossRef]
Model | MAPE | RMSE | MAE |
---|---|---|---|
Base | 15.62 | 8485.73 | 5865.11 |
Causal | 20.37 | 9749.18 | 7465.28 |
Similar | 18.06 | 8984.84 | 6595.78 |
Base-Causal | 6.36 | 6333.37 | 2739.73 |
Base-Similar | 6.28 | 3635.15 | 1915.17 |
Causal-Similar | 8.62 | 4595.11 | 2747.87 |
Base-Causal-Similar | 3.49 | 1697.14 | 1122.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A.; Tsoukalas, L.H. A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality. Energies 2021, 14, 6088. https://doi.org/10.3390/en14196088
Kontogiannis D, Bargiotas D, Daskalopulu A, Tsoukalas LH. A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality. Energies. 2021; 14(19):6088. https://doi.org/10.3390/en14196088
Chicago/Turabian StyleKontogiannis, Dimitrios, Dimitrios Bargiotas, Aspassia Daskalopulu, and Lefteri H. Tsoukalas. 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality" Energies 14, no. 19: 6088. https://doi.org/10.3390/en14196088
APA StyleKontogiannis, D., Bargiotas, D., Daskalopulu, A., & Tsoukalas, L. H. (2021). A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality. Energies, 14(19), 6088. https://doi.org/10.3390/en14196088