A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures
Abstract
:1. Introduction
2. Dispersion Principle and Impact Factors
2.1. Wind Environment
2.2. Thermal Environment
2.3. Street Layout
2.4. Types of Pollutants
3. Distribution of Pollutants
3.1. Spatial Distribution Differences
3.2. Temporal Distribution Differences
4. Relationship with Indoor Air Quality
4.1. I/O Ratio and Its Impact Factors
4.2. Research Findings
5. Improving Measures
5.1. Planning and Layout
5.2. Greening Facilities
5.3. Other Measures
6. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Su, R.; Jin, X.; Li, H.; Huang, L.; Li, Z. The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 2020, 241, 125127. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Gori, T.; Al-Kindi, S.; Deanfield, J.; Lelieveld, J.; Daiber, A.; Rajagopalan, S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur. Hear. J. 2018, 39, 3543–3550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Chen, R.; Sera, F.; Cabrera, A.M.V.; Guo, Y.; Tong, S.; Coelho, M.S.; Saldiva, P.H.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choe, S.-A.; Kim, O.-J.; Kim, S.-Y.; Kim, S.; Im, C.; Kim, Y.S.; Yoon, T.K. Outdoor air pollution and diminished ovarian reserve among infertile Korean women. Environ. Health Prev. Med. 2021, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Robertson, C.; Ramsay, C.; Gillespie, C.; Napier, G. Estimating the health impact of air pollution in Scotland, and the resulting benefits of reducing concentrations in city centres. Spat. Spatio Temporal Epidemiol. 2019, 29, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.-C.; Garrick, J.M. Developmental impact of air pollution on brain function. Neurochem. Int. 2019, 131, 104580. [Google Scholar] [CrossRef]
- Hunter, L.; Johnson, G.; Watson, I. An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos. Environ. Part B Urban Atmos. 1992, 26, 425–432. [Google Scholar] [CrossRef]
- Ai, Z.; Mak, C. From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: Issues and possibilities for improvement. Build. Environ. 2015, 94, 489–503. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Boundary layer climates. Earth Sci. Rev. 1987, 27, 265. [Google Scholar]
- Jiang, G.; Hu, T.; Yang, H. Effects of Ground Heating on Ventilation and Pollutant Transport in Three-Dimensional Urban Street Canyons with Unit Aspect Ratio. Atmosphere 2019, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, A.M.; Dennis, L.Y.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Santamouris, M.; Papanikolaou, N.; Cartalis, C.; Tsangrassoulis, A. Simulation of the Urban Heat Island Phenomenon in Mediterranean Climates. Pure Appl. Geophys. PAGEOPH 2004, 161, 429–451. [Google Scholar] [CrossRef]
- Vallati, A.; Mauri, L.; Colucci, C.; Ocłoń, P. Effects of radiative exchange in an urban canyon on building surfaces’ loads and temperatures. Energy Build. 2017, 149, 260–271. [Google Scholar] [CrossRef]
- Georgakis, C.; Santamouris, M. On the estimation of wind speed in urban canyons for ventilation purposes—Part 1: Coupling between the undisturbed wind speed and the canyon wind. Build. Environ. 2008, 43, 1404–1410. [Google Scholar] [CrossRef]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-F.; He, H.-D.; Wang, H.-W.; Li, X.-B.; Peng, Z.-R. Characterizing temporal and vertical distribution patterns of traffic-emitted pollutants near an elevated expressway in urban residential areas. Build. Environ. 2020, 172, 106678. [Google Scholar] [CrossRef]
- Zhong, J.; Cai, X.-M.; Bloss, W. Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review. Environ. Pollut. 2016, 214, 690–704. [Google Scholar] [CrossRef]
- Lian, R.Y.; Dong, J.S. Study on Motor Vehicle Exhaust Pollution (Co) Control. Traffic Transp. 2013, 1, 142–144. [Google Scholar]
- Qian, Z.; Zhang, J.; Wei, F.; E Wilson, W.; Chapman, R.S. Long-term ambient air pollution levels in four Chinese cities: Inter-city and intra-city concentration gradients for epidemiological studies. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Kourtidis, K.A.; Ziomas, I.; Zerefos, C.; Kosmidis, E.; Symeonidis, P.; Christophilopoulos, E.; Karathanassis, S.; Mploutsos, A. Benzene, toluene, ozone, NO2 and SO2 measurements in an urban street canyon in Thessaloniki, Greece. Atmos. Environ. 2002, 36, 5355–5364. [Google Scholar] [CrossRef]
- Biersteker, K.; De Graaf, H.; A Nass, C. Indoor air pollution in rotterdam homes. Air Water Pollut 1965, 9, 343–350. [Google Scholar]
- Jo, W.-K.; Kim, K.-Y.; Park, K.-H.; Kim, Y.-K.; Lee, H.-W.; Park, J.-K. Comparison of outdoor and indoor mobile source-related volatile organic compounds between low- and high-floor apartments. Environ. Res. 2003, 92, 166–171. [Google Scholar] [CrossRef]
- Riain, C.N.; Fisher, B.; Martin, C.J.; Littler, J. Flow Field and Pollution Dispersion in a Central London Street. Environ. Monit. Assess. 1998, 52, 299–314. [Google Scholar] [CrossRef]
- Kim, J.-J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model. Atmos. Environ. 2004, 38, 3039–3048. [Google Scholar] [CrossRef]
- Li, C.; Zhou, S.; Xiao, Y.; Huang, Q.; Li, L.; Chan, P.W. Effects of inflow conditions on mountainous/urban wind environment simulation. Build. Simul. 2017, 10, 573–588. [Google Scholar] [CrossRef]
- Baik, J.J.; Kim, J.J. A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J. Appl. Meteorol. 2010, 38, 1576–1589. [Google Scholar] [CrossRef]
- Kim, J.-J.; Baik, J.-J. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 309–329. [Google Scholar] [CrossRef]
- Moonen, P.; Dorer, V.; Carmeliet, J. Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment. J. Wind. Eng. Ind. Aerodyn. 2012, 104–106, 389–396. [Google Scholar] [CrossRef]
- Vignati, E.; Berkowicz, R.; Hertel, O. Comparison of air quality in streets of Copenhagen and Milan, in view of the climatological conditions. Sci. Total Environ. 1996, 189–190, 467–473. [Google Scholar] [CrossRef]
- Jones, S.G.; Fisher, B.E.A.; Gonzalez-Flesca, N.; Sokhi, R. The Use of Measurement Programmes and Models to Assess Concentrations Next to Major Roads in Urban Areas. Environ. Monit. Assess. 2000, 64, 531–547. [Google Scholar] [CrossRef]
- Rincón-Casado, A.; De La Flor, F.S.; Vera, E.C.; Ramos, J.S.; De La Flor, F.J.S. New natural convection heat transfer correlations in enclosures for building performance simulation. Eng. Appl. Comput. Fluid Mech. 2017, 11, 340–356. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Barbano, F.; Brattich, E.; Pulvirenti, B. The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment. Atmosphere 2020, 11, 1186. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Han, Z.; Zhou, D.; Shen, Z.; Zhang, H.; Zhu, H.; Bao, Y. Three-dimensional delayed detached-eddy simulation of wind flow and particle dispersion in the urban environment. Atmos. Environ. 2019, 201, 173–189. [Google Scholar] [CrossRef]
- Mei, X.; Gong, G. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread. Atmos. Environ. 2018, 185, 137–146. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, S.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Clim. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Cui, D.; Hu, G.; Ai, Z.; Du, Y.; Mak, C.M.; Kwok, K. Particle image velocimetry measurement and CFD simulation of pedestrian level wind environment around U-type street canyon. Build. Environ. 2019, 154, 239–251. [Google Scholar] [CrossRef]
- Georgakis, C.; Santamouris, M. Experimental investigation of air flow and temperature distribution in deep urban canyons for natural ventilation purposes. Energy Build. 2006, 38, 367–376. [Google Scholar] [CrossRef]
- Soulhac, L.; Salizzoni, P. Dispersion in a street canyon for a wind direction parallel to the street axis. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 903–910. [Google Scholar] [CrossRef]
- Lin, M.; Hang, J.; Li, Y.; Luo, Z.; Sandberg, M. Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Build. Environ. 2014, 79, 152–167. [Google Scholar] [CrossRef]
- Hang, J.; Luo, Z.; Sandberg, M.; Gong, J. Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build. Environ. 2013, 70, 318–333. [Google Scholar] [CrossRef]
- Huang, Y.-D.; Hou, R.-W.; Liu, Z.-Y.; Song, Y.; Cui, P.-Y.; Kim, C.-N. Effects of Wind Direction on the Airflow and Pollutant Dispersion inside a Long Street Canyon. Aerosol Air Qual. Res. 2019, 19, 1152–1171. [Google Scholar] [CrossRef]
- Gromke, C.C.; Ruck, B. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions. Boundary-Layer Meteorol. 2012, 144, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Longley, I.; Gallagher, M.; Dorsey, J.; Flynn, M.; Barlow, J. Short-term measurements of airflow and turbulence in two street canyons in Manchester. Atmos. Environ. 2004, 38, 69–79. [Google Scholar] [CrossRef]
- Eliasson, I.; Offerle, B.; Grimmond, S.; Lindqvist, S. Wind fields and turbulence statistics in an urban street canyon. Atmos. Environ. 2006, 40, 1–16. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Koronakis, I.; Livada, I.; Asimakopoulos, D. Thermal and air flow characteristics in a deep pedestrian canyon under hot weather conditions. Atmos. Environ. 1999, 33, 4503–4521. [Google Scholar] [CrossRef]
- Santamouris, M.; Georgakis, C.; Niachou, A. On the estimation of wind speed in urban canyons for ventilation purposes—Part 2: Using of data driven techniques to calculate the more probable wind speed in urban canyons for low ambient wind speeds. Build. Environ. 2008, 43, 1411–1418. [Google Scholar] [CrossRef]
- Niachou, K.; Livada, I.; Santamouris, M. Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions—Part I: Air and surface temperatures. Build. Environ. 2008, 43, 1383–1392. [Google Scholar] [CrossRef]
- Mills, G.M.; Arnfield, A. Simulation of the energy budget of an urban canyon—II. Comparison of model results with measurements. Atmos. Environ. Part B Urban Atmos. 1993, 27, 171–181. [Google Scholar] [CrossRef]
- Bourbia, F.; Awbi, H. Building cluster and shading in urban canyon for hot dry climate: Part 2: Shading simulations. Renew. Energy 2004, 29, 291–301. [Google Scholar] [CrossRef]
- Olivardia, F.G.; Zhang, Q.; Matsuo, T.; Shimadera, H.; Kondo, A. Analysis of Pollutant Dispersion in a Realistic Urban Street Canyon Using Coupled CFD and Chemical Reaction Modeling. Atmosphere 2019, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Shan, R.; Zhang, Y.; Li, X.-X.; Yin, T.; Hang, J.; Norford, L. Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas. Sci. Total Environ. 2018, 647, 255–267. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, G.; Wang, X.; Liu, S.; Mak, C.M.; Fan, Y.; Hang, J. Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Sci. Total Environ. 2018, 653, 968–994. [Google Scholar] [CrossRef] [PubMed]
- Hoydysh, W.G.; Dabberdt, W.F. Kinematics and dispersion characteristics of flows in asymmetric street canyons. Atmos. Environ. 1988, 22, 2677–2689. [Google Scholar] [CrossRef]
- Kukkonen, J.; Valkonen, E.; Walden, J.; Koskentalo, T.; Aarnio, P.; Karppinen, A.; Berkowicz, R.; Kartastenpää, R. A measurement campaign in a street canyon in Helsinki and comparison of results with predictions of the OSPM model. Atmos. Environ. 2001, 35, 231–243. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Plate, E. Wind-tunnel study of concentration fields in street canyons. Atmos. Environ. 1999, 33, 3973–3979. [Google Scholar] [CrossRef]
- Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan. 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; DI Sabatino, S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Xiaomin, X.; Zhen, H.; Jiasong, W. The impact of urban street layout on local atmospheric environment. Build. Environ. 2006, 41, 1352–1363. [Google Scholar] [CrossRef]
- Xue, F.; Li, X. The impact of roadside trees on traffic released PM 10 in urban street canyon: Aerodynamic and deposition effects. Sustain. Cities Soc. 2017, 30, 195–204. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, S.-C.; Gao, Y.; Cui, L.; Deng, W.; Cao, J.; Shen, Z.; Sun, J. Real-time measurements of PM2.5, PM10–2.5, and BC in an urban street canyon. Particuology 2014, 20, 134–140. [Google Scholar] [CrossRef]
- Chan, L.; Lau, W.; Wang, X.; Tang, J. Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environ. Int. 2003, 29, 429–435. [Google Scholar] [CrossRef]
- Väkevä, M.; Hämeri, K.; Kulmala, M.; Lahdes, R.; Ruuskanen, J.; Laitinen, T. Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos. Environ. 1999, 33, 1385–1397. [Google Scholar] [CrossRef]
- Chan, L.; Kwok, W. Vertical dispersion of suspended particulates in urban area of Hong Kong. Atmos. Environ. 2000, 34, 4403–4412. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zheng, S.; He, Y. Aerosol effects on ozone concentrations in Beijing: A model sensitivity study. J. Environ. Sci. 2012, 24, 645–656. [Google Scholar] [CrossRef]
- Xing, J.; Wang, J.; Mathur, R.; Wang, S.; Sarwar, G.; Pleim, J.; Hogrefe, C.; Zhang, Y.; Jiang, J.; Wong, D.C.; et al. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmos. Chem. Phys. Discuss. 2017, 17, 9869–9883. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Z.; Wang, X.; Yamaji, K.; Takigawa, M.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Irie, H.; Hu, B.; et al. Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. Atmos. Environ. 2011, 45, 1817–1829. [Google Scholar] [CrossRef]
- Chameides, W.L.; Yu, H.; Liu, S.C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C.S.; Saylor, R.; Luo, C.; et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? Proc. Natl. Acad. Sci. USA 1999, 96, 13626–13633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, S.; Liao, H.; Zhu, B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos. Environ. 2013, 85, 123–138. [Google Scholar] [CrossRef]
- Xie, X.; Hao, C.; Huang, Y.; Huang, Z. Influence of TiO2-based photocatalytic coating road on traffic-related NOx pollutants in urban street canyon by CFD modeling. Sci. Total Environ. 2020, 724, 138059. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS–diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. Discuss. 2013, 13, 4375–4392. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Kang, Y.M.; Yang, F.; Zhong, K. Impacts of upstream buildings on the flow fields and pollutant distributions in street canyons. China Environ. Sci. 2015, 35, 45–54. [Google Scholar]
- Yang, F.; Zhong, K.; Kang, Y.M. Effects of street geometric configurations on the pollutant dispersion around the canyons. China Environ. Sci. 2015, 35, 706–713. [Google Scholar]
- Tsai, M.-Y.; Chen, K.-S.; Wu, C.-H. Three-Dimensional Modeling of Air Flow and Pollutant Dispersion in an Urban Street Canyon with Thermal Effects. J. Air Waste Manag. Assoc. 2005, 55, 1178–1189. [Google Scholar] [CrossRef]
- DePaul, F.; Sheih, C. A tracer study of dispersion in an urban street canyon. Atmos. Environ. (1967) 1985, 19, 555–559. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Gonzalez-Flesca, N.; Fisher, B. Assessment of traffic-related air pollution in two street canyons in Paris: Implications for exposure studies. Atmos. Environ. 2002, 36, 1025–1039. [Google Scholar] [CrossRef]
- Weber, S.; Kuttler, W.; Weber, K. Flow characteristics and particle mass and number concentration variability within a busy urban street canyon. Atmos. Environ. 2006, 40, 7565–7578. [Google Scholar] [CrossRef]
- Hagler, G.; Baldauf, R.; Thoma, E.; Long, T.; Snow, R.; Kinsey, J.; Oudejans, L.; Gullett, B. Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ. 2009, 43, 1229–1234. [Google Scholar] [CrossRef]
- Hagler, G.S.; Thoma, E.D.; Baldauf, R.W. High-Resolution Mobile Monitoring of Carbon Monoxide and Ultrafine Particle Concentrations in a Near-Road Environment. J. Air Waste Manag. Assoc. 2010, 60, 328–336. [Google Scholar] [CrossRef]
- Hitchins, J.; Morawska, L.; Wolff, R.; Gilbert, D. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmos. Environ. 2000, 34, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fruin, S.; Kozawa, K.; Mara, S.; Paulson, S.E.; Winer, A.M. A wide area of air pollutant impact downwind of a freeway during pre-sunrise hours. Atmos. Environ. 2009, 43, 2541–2549. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.; Edgerton, S.A.; Vega, E.; Ortiz, E. Spatial Differences in Outdoor PM10 Mass and Aerosol Composition in Mexico City. J. Air Waste Manag. Assoc. 2002, 52, 423–434. [Google Scholar] [CrossRef]
- Qadir, R.; Schnelle-Kreis, J.; Abbaszade, G.; Arteaga-Salas, J.; Diemer, J.; Zimmermann, R. Spatial and temporal variability of source contributions to ambient PM10 during winter in Augsburg, Germany using organic and inorganic tracers. Chemosphere 2014, 103, 263–273. [Google Scholar] [CrossRef]
- Zhou, Y.; I Levy, J. Factors influencing the spatial extent of mobile source air pollution impacts: A meta-analysis. BMC Public Health 2007, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Kimbrough, S.; Baldauf, R.W.; Hagler, G.S.W.; Shores, R.C.; Mitchell, W.; Whitaker, D.A.; Croghan, C.W.; Vallero, D.A.; Kimbrough, E.S. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality. Air Qual. Atmos. Health 2012, 6, 295–305. [Google Scholar] [CrossRef]
- Pattinson, W.; Longley, I.; Kingham, S. Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmos. Environ. 2014, 94, 782–792. [Google Scholar] [CrossRef]
- Padró-Martínez, L.T.; Patton, A.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuuluvainen, H.; Poikkimäki, M.; Järvinen, A.; Kuula, J.; Irjala, M.; Maso, M.D.; Keskinen, J.; Timonen, H.; Niemi, J.; Rönkkö, T. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environ. Pollut. 2018, 241, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Giemsa, E.; Soentgen, J.; Kusch, T.; Beck, C.; Münkel, C.; Cyrys, J.; Pitz, M. Influence of Local Sources and Meteorological Parameters on the Spatial and Temporal Distribution of Ultrafine Particles in Augsburg, Germany. Front. Environ. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, R.; Hou, J.; Song, Y.; Luo, S. Investigation on Indoor Air Quality in Tianjin Residential Buildings. Procedia Eng. 2017, 205, 3811–3815. [Google Scholar] [CrossRef]
- Jovanović, M.; Vučićević, B.; Turanjanin, V.; Živković, M.; Spasojević, V. Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 2014, 77, 42–48. [Google Scholar] [CrossRef]
- Pegas, P.; Nunes, T.; Alves, C.; Silva, J.; Vieira, S.; Caseiro, A.; Pio, C. Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmos. Environ. 2012, 55, 80–89. [Google Scholar] [CrossRef]
- Yang, F.; Zhong, K.; Chen, Y.; Kang, Y. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons. Environ. Sci. Pollut. Res. 2017, 24, 23620–23635. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Quang, T.N.; He, C.; Morawska, L.; Knibbs, L. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings. Atmos. Environ. 2013, 79, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Stasiulaitiene, I.; Krugly, E.; Prasauskas, T.; Ciuzas, D.; Kliucininkas, L.; Kauneliene, V.; Martuzevicius, D. Infiltration of outdoor combustion-generated pollutants to indoors due to various ventilation regimes: A case of a single-family energy efficient building. Build. Environ. 2019, 157, 235–241. [Google Scholar] [CrossRef]
- Jeng, C.-J.; Kindzierski, W.B.; Smith, D.W. Particle penetration through rectangular-shaped cracks. J. Environ. Eng. Sci. 2006, 5, S111–S119. [Google Scholar] [CrossRef]
- Chen, J.; Brager, G.S.; Augenbroe, G.; Song, X. Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Appl. Energy 2018, 235, 673–684. [Google Scholar] [CrossRef]
- Cong, X.C.; Zhao, J.J.; Jing, Z.; Wang, Q.G.; Ni, P.F. Indoor particle dynamics in a school office: Determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions. Environ. Geochem. Health 2018, 40, 2511–2524. [Google Scholar] [CrossRef]
- Mei, X.; Gong, G. Influence of Indoor Air Stability on Suspended Particle Dispersion and Deposition. Energy Procedia 2017, 105, 4229–4235. [Google Scholar] [CrossRef]
- Wallace, L.; Williams, R. Use of Personal-Indoor-Outdoor Sulfur Concentrations to Estimate the Infiltration Factor and Outdoor Exposure Factor for Individual Homes and Persons. Environ. Sci. Technol. 2005, 39, 1707–1714. [Google Scholar] [CrossRef]
- Mleczkowska, A.; Strojecki, M.; Bratasz, L.; Kozlowski, R. Particle penetration and deposition inside historical churches. Build. Environ. 2016, 95, 291–298. [Google Scholar] [CrossRef]
- Bennett, D.; Koutrakis, P. Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. J. Aerosol Sci. 2006, 37, 766–785. [Google Scholar] [CrossRef]
- El Hamdani, S.; Limam, K.; Abadie, M.; Bendou, A. Deposition of fine particles on building internal surfaces. Atmos. Environ. 2008, 42, 8893–8901. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to ozone in school and office indoor environments. Environ. Int. 2018, 119, 503–514. [Google Scholar] [CrossRef]
- Peng, C.; Ni, P.; Xi, G.; Tian, W.; Fan, L.; Zhou, D.; Zhang, Q.; Tang, Y. Evaluation of particle penetration factors based on indoor PM2.5 removal by an air cleaner. Environ. Sci. Pollut. Res. 2020, 27, 8395–8405. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Arhami, M.; Nabizadeh, R.; Sowlat, M.H.; Pourpak, Z.; Rastkari, N.; Momeniha, F.; Kashani, H.; et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014, 82, 375–382. [Google Scholar] [CrossRef]
- Colbeck, I.; Nasir, Z.A.; Ali, Z. Characteristics of indoor/outdoor particulate pollution in urban and rural residential environment of Pakistan. Indoor Air 2010, 20, 40–51. [Google Scholar] [CrossRef]
- Li, C.-S.; Lin, C.-H. Carbon profile of residential indoor PM1 and PM2.5 in the subtropical region. Atmos. Environ. 2003, 37, 881–888. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Hang, J.; Liu, S.; Wei, J.; Liu, Y.; Xie, J.; Sandberg, M. Numerical investigation of wind-driven natural ventilation performance in a multi-storey hospital by coupling indoor and outdoor airflow. Indoor Built Environ. 2016, 25, 1226–1247. [Google Scholar] [CrossRef]
- van Hooff, T.; Blocken, B. CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium. Build. Environ. 2013, 61, 1–17. [Google Scholar] [CrossRef]
- Hang, J.; Buccolieri, R.; Yang, X.; Yang, H.; Quarta, F.; Wang, B. Impact of indoor-outdoor temperature differences on dispersion of gaseous pollutant and particles in idealized street canyons with and without viaduct settings. Build. Simul. 2018, 12, 285–297. [Google Scholar] [CrossRef]
- Talbot, N.; Kubelova, L.; Makes, O.; Cusack, M.; Ondracek, J.; Vodička, P.; Schwarz, J.; Zdimal, V. Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season. Atmos. Environ. 2016, 131, 171–184. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Kettle, R.; Cosford, P.; Lincoln, P.; Holgate, S.; Grigg, J.; Kelly, F.; Pencheon, D. Local action on outdoor air pollution to improve public health. Int. J. Public Health 2018, 63, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Excellence, H.C. Walking and Cycling: Local Measures to Promote Walking and Cycling as Forms of Travel or Recreation; NHS(National Institute for Health and Clinical Excellence): London, UK, 2012. [Google Scholar]
- Holgate, S.T. ‘Every breath we take: The lifelong impact of air pollution’—A call for action. Clin. Med. 2017, 17, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, T.; Han, H.; Zhao, Z.; De Richter, R.; Wu, Y.; Li, W.; Wong, N.H. Field synergy analysis of pollutant dispersion in street canyons and its optimization by adding wind catchers. Build. Simul. 2020, 14, 391–405. [Google Scholar] [CrossRef]
- Tong, N.Y.; Leung, D.Y. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons. J. Environ. Sci. 2012, 24, 2091–2103. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J.; Xie, Z. The impact of solar radiation and street layout on pollutant dispersion in street canyon. Build. Environ. 2005, 40, 201–212. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.H. Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Build. Environ. 2010, 45, 176–188. [Google Scholar] [CrossRef]
- Hunter, L.; Watson, I.; Johnson, G. Modelling air flow regimes in urban canyons. Energy Build. 1990, 15, 315–324. [Google Scholar] [CrossRef]
- Yim, S.; Fung, J.; Lau, A.; Kot, S. Air ventilation impacts of the “wall effect” resulting from the alignment of high-rise buildings. Atmos. Environ. 2009, 43, 4982–4994. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Kwok, K.; Yan, F. CFD-based analysis of urban haze-fog dispersion—A preliminary study. Build. Simul. 2020, 14, 365–375. [Google Scholar] [CrossRef]
- Kumar, P.; Andrade, M.D.F.; Ynoue, R.; Fornaro, A.; de Freitas, E.D.; Martins, J.; Martins, L.D.; Albuquerque, T.; Zhang, Y.; Morawska, L. New directions: From biofuels to wood stoves: The modern and ancient air quality challenges in the megacity of São Paulo. Atmos. Environ. 2016, 140, 364–369. [Google Scholar] [CrossRef]
- Kumar, P.; Khare, M.; Harrison, R.M.; Bloss, W.J.; Lewis, A.; Coe, H.; Morawska, L. New directions: Air pollution challenges for developing megacities like Delhi. Atmos. Environ. 2015, 122, 657–661. [Google Scholar] [CrossRef]
- Abhijith, K.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; DI Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Fantozzi, F.; Monaci, F.; Blanusa, T.; Bargagli, R. Spatio-temporal variations of ozone and nitrogen dioxide concentrations under urban trees and in a nearby open area. Urban Clim. 2015, 12, 119–127. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Thatcher, M.; Barnett, G.; Kachenko, A.; Prince, R. Urban vegetation for reducing heat related mortality. Environ. Pollut. 2014, 192, 275–284. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.; Byrne, J. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Buccolieri, R.; Salim, S.M.; Leo, L.; Di Sabatino, S.; Chan, A.; Ielpo, P.; de Gennaro, G.; Gromke, C. Analysis of local scale tree–atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmos. Environ. 2011, 45, 1702–1713. [Google Scholar] [CrossRef]
- Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manag. 2012, 94, 91–101. [Google Scholar] [CrossRef]
- Rui, L.; Buccolieri, R.; Gao, Z.; Gatto, E.; Ding, W. Study of the effect of green quantity and structure on thermal comfort and air quality in an urban-like residential district by ENVI-met modelling. Build. Simul. 2018, 12, 183–194. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J.D. Impact of bicycle route type on exposure to traffic-related air pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Hagler, G.S.; Lin, M.-Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef]
- Barth, M.; Boriboonsomsin, K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transp. Res. Part D: Transp. Environ. 2009, 14, 400–410. [Google Scholar] [CrossRef]
- Caulfield, B.; Brazil, W.; Ni Fitzgerald, K.; Morton, C. Measuring the success of reducing emissions using an on-board eco-driving feedback tool. Transp. Res. Part D: Transp. Environ. 2014, 32, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Casale, F.; Nieddu, G.; Burdino, E.; Vignati, D.A.L.; Ferretti, C.; Ugazio, G. Monitoring of Submicron Particulate Matter Concentrations in the Air of Turin City, Italy. Influence of Traffic-limitations. Water Air Soil Pollut. 2008, 196, 141–149. [Google Scholar] [CrossRef]
- Quiros, D.C.; Zhang, Q.; Choi, W.; He, M.; Paulson, S.E.; Winer, A.M.; Wang, R.; Zhu, Y. Air quality impacts of a scheduled 36-h closure of a major highway. Atmos. Environ. 2013, 67, 404–414. [Google Scholar] [CrossRef]
VOC | Floor | Daytime | Night | ||||
---|---|---|---|---|---|---|---|
Outdoor | Indoor | I/O | Outdoor | Indoor | I/O | ||
MTBE | Low | 4.5 | 5.5 | 1.22 | 6.1 | 6.8 | 1.11 |
High | 4.0 | 4.3 | 1.08 | 5.1 | 5.7 | 1.12 | |
Benzene | Low | 6.2 | 6.3 | 1.02 | 7.7 | 13.6 | 1.77 |
High | 3.5 | 5.3 | 1.51 | 4.8 | 11.6 | 2.42 | |
Toluene | Low | 25.9 | 40.2 | 1.55 | 36.9 | 57.4 | 1.56 |
High | 19.8 | 30.4 | 1.54 | 24.8 | 44.5 | 1.79 | |
Ethylbenzene | Low | 4.4 | 4.6 | 1.05 | 4.3 | 6.1 | 1.42 |
High | 3.4 | 5.1 | 1.50 | 3.7 | 8.0 | 2.16 |
Measures | Reasons | Benefits | References |
---|---|---|---|
Ameliorate sidewalks and lanes planning | Sidewalks and bicycle lanes are places where passersby are most vulnerable to pollutants | By improving the facilities of sidewalks and bicycle lanes, planning bicycle lanes in relatively quiet areas with a good environment, and isolating motor lanes from other roads by vegetation, pedestrians’ exposure to pollutants can be reduced | [139,140] |
Reduce the emission of traffic pollutants | Exhaust from public transportation and private cars is the main source of pollutants in street canyons | Through environmental protection reform in the vehicle industry, the introduction of reasonable transportation policies, and the encouragement of low-carbon travel, energy can be saved while improving the atmospheric environment | [141,142] |
Raise public awareness | Participation of all people is one of the most effective ways to improve the environment | There are many measures that can be taken, including publicizing air pollution and its relationship with human health through the media; showing enterprises and individuals how to reduce pollution caused by themselves; in some public places, such as hospitals, stations, shopping malls, etc., an electronic screen can be set to display air quality in real-time, and so on | [143,144] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, W.; Wu, Y.; Zang, J. A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures. Energies 2021, 14, 6155. https://doi.org/10.3390/en14196155
Lv W, Wu Y, Zang J. A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures. Energies. 2021; 14(19):6155. https://doi.org/10.3390/en14196155
Chicago/Turabian StyleLv, Weixun, Yan Wu, and Jianbin Zang. 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures" Energies 14, no. 19: 6155. https://doi.org/10.3390/en14196155
APA StyleLv, W., Wu, Y., & Zang, J. (2021). A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures. Energies, 14(19), 6155. https://doi.org/10.3390/en14196155