Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis
Abstract
:1. Introduction
- Is MCA a relevant method to assess the appropriateness of selecting bus lines for electrification?
2. Literature Review
2.1. Environmental Challenge for Cities in the European Union
2.2. Electromobility as a Trend in the Public Transport Market in Cities
2.3. Decision-Making Process on Electrification of Public Transport
2.4. Tools Supporting the Decision-Making Process
3. Case Study Description: Trolleybus Transport Development in Gdynia
3.1. Site Description—City of Gdynia
3.2. Current Status of Electric Public Transport in Gdynia
3.3. Perspectives of Further Development of Electric Public Transport in Gdynia
4. Results—Practical Application of MCA to Support the Decision-Making Process in Gdynia
- Public transport authorities;
- Public transport operators with experience in operating electric vehicles;
- Decision-makers representing local government;
- Transport specialists who focus their scientific interests around electromobility;
- Transport consulting companies;
- Non-governmental organisations.
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- TransInfo Polski Rynek Autobusów Elektrycznych w 2020 r. Available online: https://transinfo.pl/infobus/polski-rynek-autobusow-elektrycznych-w-2020-r/?fbclid=IwAR0wlAVdhB0qUe0REDapK_UOdF0AZgE2oKbRuSOmM9xNTvZbIMK-utjb2tA (accessed on 1 July 2021).
- Yin, R.K. Case Study Research: Design and Methods, 5th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Bjørner, T. The advantages of and barriers to being smart in a smart city: The perceptions of project managers within a smart city cluster project in Greater Copenhagen. Cities 2021, 114, 103187. [Google Scholar] [CrossRef]
- Canitez, F.; Çelebi, D.; Beyazit, E. Establishing a metropolitan transport authority in Istanbul: A new institutional economics framework for institutional change in urban transport. Case Stud. Transp. Policy 2019, 7, 562–573. [Google Scholar] [CrossRef]
- World Economic Forum. World Economic Forum. World Economic Forum White Paper. In Digital Transformation of Industries: In Collaboration with Accenture; Digital Enterprise; World Economic Forum: Cologny, Switzerland, 2016. [Google Scholar]
- Urbanek, A. Pomiar zrównoważonej mobilności miejskiej: Przegląd badań. Stud. Pr. Kol. Zarządzania Finans 2019, 171, 61–80. [Google Scholar] [CrossRef]
- Mirzahossein, H.; Mohghaddam, S.A.A. Increasing Citizen’s Livability In The Future City: Responsive City, A Remarkable Solution. Theor. Empir. Res. Urban Manag. 2021, 16, 23–41. [Google Scholar]
- Kaklauskas, A.; Zavadskas, E.K.; Radzeviciene, A.; Ubarte, I.; Podviezko, A.; Podvezko, V.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of city life multiple criteria analysis. Cities 2018, 72, 82–93. [Google Scholar] [CrossRef]
- Mittal, S.; Chadchan, J.; Mishra, S.K. Review of Concepts, Tools and Indices for the Assessment of Urban Quality of Life. Soc. Indic. Res. 2020, 149, 187–214. [Google Scholar] [CrossRef]
- Newman, P.; Beatley, T.; Boyer, H. Resilient Cities. Responding to Peak Oil and Climate Change; Island Press: Washington, DC, USA, 2009; ISBN 978-1597264990. [Google Scholar]
- Wimbadi, R.W.; Djalante, R.; Mori, A. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990–2020). Sustain. Cities Soc. 2021, 72, 103023. [Google Scholar] [CrossRef]
- Komisja Europejska. Biała Księga. Plan Utworzenia Jednolitego Europejskiego Obszaru Transportu—Dążenie do Osiągnięcia Konkurencyjnego i Zasobooszczędnego Systemu Transportu; Komisja Europejska: Bruksela, Belgium, 2011. [Google Scholar]
- Jagiełło, A. Elektromobilność w Kształtowaniu Rozwoju Drogowego Transportu Miejskiego w Polsce; Wydawnictwa Uniwersytetu Gdańskiego: Gdańsk, Poland, 2021. [Google Scholar]
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2019. [Google Scholar]
- Becchetti, L.; Piscitelli, P.; Distante, A.; Miani, A.; Uricchio, A.F. European Green Deal as social vaccine to overcome COVID-19 health & economic crisis. Lancet Reg. Heal. Eur. 2021, 2, 100032. [Google Scholar]
- Chiaramonti, D.; Talluri, G.; Scarlat, N.; Prussi, M. The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios. Renew. Sustain. Energy Rev. 2021, 139, 110715. [Google Scholar] [CrossRef]
- Sówka, I.; Bezyk, Y. Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland). Atmos. Pollut. Res. 2018, 9, 289–298. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Dissemination of electric vehicles in urban areas: Major factors for success. Energy 2016, 115, 1451–1458. [Google Scholar] [CrossRef]
- Kalbar, P.P.; Birkved, M.; Hauschild, M.; Kabins, S.; Nygaard, S.E. Environmental impact of urban consumption patterns: Drivers and focus points. Resour. Conserv. Recycl. 2018, 137, 260–269. [Google Scholar] [CrossRef]
- Bartlomiejczyk, M.; Jarzebowicz, L. Utility analysis and rating of energy storages in trolleybus power supply system. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 26–27 May 2020; pp. 237–241. [Google Scholar]
- Mancini, L.; Eslava, N.A.; Traverso, M.; Mathieux, F. Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resour. Policy 2021, 71, 102015. [Google Scholar] [CrossRef]
- da Silva Lima, L.; Quartier, M.; Buchmayr, A.; Sanjuan-Delmás, D.; Laget, H.; Corbisier, D.; Mertens, J.; Dewulf, J. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain. Energy Technol. Assess. 2021, 46, 101286. [Google Scholar]
- Silvestri, L.; Forcina, A.; Silvestri, C.; Traverso, M. Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects. J. Clean. Prod. 2021, 292. [Google Scholar] [CrossRef]
- Jelti, F.; Allouhi, A.; Al-Ghamdi, S.G.; Saadani, R.; Jamil, A.; Rahmoune, M. Environmental life cycle assessment of alternative fuels for city buses: A case study in Oujda city, Morocco. Int. J. Hydrog. Energy 2021, 6, 25308–25319. [Google Scholar] [CrossRef]
- The Trolleybus as an Urban Means of Transport in the Light of the Trolley Project; Wolek, M.; Wyszomirski, O. (Eds.) University of Gdansk Press: Sopot, Poland, 2013; ISBN 9788378651741. [Google Scholar]
- Fitzová, H.; Matulová, M. Comparison of urban public transport systems in the Czech Republic and Slovakia: Factors underpinning efficiency. Res. Transp. Econ. 2020, 81, 100824. [Google Scholar] [CrossRef]
- Petkov, D. The uneven development path of Bulgarian trolleybus transport—Leading back to the future? Case Stud. Transp. Policy 2020, 8, 1383–1392. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Sarzhan, Y. Market initiative and central planning: A study of the Moscow bus network. Res. Transp. Econ. 2020, 83, 100919. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Sustainable use of the catenary by trolleybuses with auxiliary power sources on the example of gdynia. Infrastructures 2021, 6, 61. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Song, Z. Optimal charging scheduling and management for a fast-charging battery electric bus system. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 1–24. [Google Scholar] [CrossRef]
- Cairney, P. The Politics of Evidence-Based Policy Making; Palgrave Macmillan: Stirling, UK, 2016. [Google Scholar]
- Sutcliffe, S.; Court, J. Evidence-Based Policymaking: What is it? How does it work? What Relevance for Developing Countries? 2005. Available online: https://cdn.odi.org/media/documents/3683.pdf (accessed on 1 June 2021).
- Rogge, M.; van der Hurk, E.; Larsen, A. Dirk Uwe Sauer Electric bus fleet size and mix problem with optimization of charging infrastructure. Appl. Energy 2018, 211, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Trolley:2.0—Trolley Systems for Smart Cities. Available online: https://www.trolleymotion.eu/trolley2-0/ (accessed on 12 March 2021).
- Bartłomiejczyk, M.; Kołacz, R. The reduction of auxiliaries power demand: The challenge for electromobility in public transportation. J. Clean. Prod. 2020, 252, 119776. [Google Scholar] [CrossRef]
- Zhao, P.; Chapman, R.; Randal, E.; Howden-Chapman, P. Understanding resilient urban futures: A systemic modelling approach. Sustainability 2013, 5, 3202–3223. [Google Scholar] [CrossRef] [Green Version]
- Quah, E.; Mishan, E.J.; Quah, E. Cost-Benefit Analysis, 5th ed.; Routledge: London, UK, 2007; ISBN 9780415349918. [Google Scholar]
- ITF. Quantifying the Socio-Economic Benefits of Transport; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Jugović, A.; Mikuličić, J.Ž.; Maglić, L. Impact of external costs on the implementation of Motorways of the Sea system. Pomorstvo 2014, 28, 17–21. [Google Scholar]
- Broniewicz, E.; Ogrodnik, K. Multi-criteria analysis of transport infrastructure projects. Transp. Res. Part D Transp. Environ. 2020, 83, 102351. [Google Scholar] [CrossRef]
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost–Benefit Analysis: Concepts and Practice; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Fernandes, L.; Ridgley, M.A.; Van’t Hof, T. Multiple criteria analysis integrates economic, ecological and social objectives for coral reef managers. Coral Reefs 1999, 18, 393–402. [Google Scholar] [CrossRef]
- Dodgson, J.S.; Spackman, M.; Pearman, A.; Phillips, L.D. Multi-Criteria Analysis: A Manual; Department for Communities and Local Government, Eland House, Bressenden Plac: London, UK, 2009; Volume 11, ISBN 9781409810230. [Google Scholar]
- Wood, M. The Pros and Cons of Using Pros and Cons for Multi-Criteria Evaluation and Decision Making. SSRN Electron. J. 2011. Available online: https://ssrn.com/abstract=1545189 (accessed on 1 June 2021).
- Filimonau, V. Life Cycle Assessment (LCA) and Life Cycle Analysis in Tourism; Springer: Cham, Switzerland, 2016; ISBN 9783319262222. [Google Scholar]
- Palmer, K.; Tate, J.E.; Wadud, Z.; Nellthorp, J. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Appl. Energy 2018, 209, 108–119. [Google Scholar] [CrossRef]
- City of Gdynia. Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Gdyni [Spatial Masterplan of the City of Gdynia]; City of Gdynia: Gdynia, Poland, 2019. [Google Scholar]
- ZKM Gdynia. Preferencje i Zachowania Komunikacyjne Mieszkańców Gdyni. Raport z Badań Marketingowych 2018. [Preferences and Transport Behavior of Citizens of Gdynia. Marketing Research Report 2018]; ZKM Gdynia: Gdynia, Poland, 2019. [Google Scholar]
- Decker, B.; Hećimović, H.; Wołek, M. Sustainable Urban Mobility Planning in Central Eastern Europe: Case Examples from Poland and Croatia. Procedia Soc. Behav. Sci. 2012, 48, 2748–2757. [Google Scholar] [CrossRef]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279, 123807. [Google Scholar] [CrossRef]
- Wołek, M.; Hebel, K. Strategic Planning of the Development of Trolleybus Transportation within the Cities of Poland. In Smart and Green Solutions for Transport Systems. 16th Scientific and Technical Conference “Transport Systems. Theory and Practice 2019” Selected Papers; Sierpinski, G., Ed.; Springer Nature: Cham, Switzerland, 2020; ISBN 978-3-030-35543-2. [Google Scholar]
- Gdynia City Council. Strategia Rozwoju Elektromobilności dla Gminy Miasta Gdynia do 2035 roku [Strategy of Electromobility for the Commune of Gdynia City to 2035]; Gdynia City Council: Gdynia, Poland, 2020. [Google Scholar]
- Wołek, M.; Szmelter-Jarosz, A.; Koniak, M.; Golejewska, A. Transformation of trolleybus transport in Poland. Does in-motion charging (technology) matter? Sustainability 2020, 12, 9744. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M. Praktyczna aplikacja In Motion Charging w Gdyni: Trolejbusy w obsłudze linii autobusowych. Autobusy Tech. Eksploat. Syst. Transp. 2016, 7–8, 58–64. [Google Scholar]
- Połom, M.; Wiśniewski, P. Implementing electromobility in public transport in poland in 1990–2020. A review of experiences and evaluation of the current development directions. Sustainability 2021, 13, 4009. [Google Scholar] [CrossRef]
- Gdynia City Council Strategia Rozwoju Gdyni [Strategy of Development of the City of Gdynia] 2017. Available online: http://2030.gdynia.pl/cms/fck/uploaded/strategia%20rozwoju%20miasta%20gdyni%202030_folder.pdf (accessed on 15 June 2021).
- Deluka-Tibljaš, A.; Karleuša, B.; Dragičevič, N. Review of muiticriteria-analysis methods application in decision making about transport infrastructure. Gradjevinar 2013, 65, 619–631. [Google Scholar]
- Iniestra, J.G.; Gutiérrez, J.G. Multicriteria decisions on interdependent infrastructure transportation projects using an evolutionary-based framework. Appl. Soft Comput. J. 2009, 9, 512–526. [Google Scholar] [CrossRef]
- Dahlgren, S.; Ammenberg, J. Sustainability assessment of public transport, part—applying a multi-criteria assessment method to compare different bus technologies. Sustainability 2021, 13, 1273. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Lin, C.W.; Opricovic, S. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 2005, 33, 1373–1383. [Google Scholar] [CrossRef]
- Hasan, M.A.; Chapman, R.; Frame, D.J. Acceptability of transport emissions reduction policies: A multi-criteria analysis. Renew. Sustain. Energy Rev. 2020, 133, 110298. [Google Scholar] [CrossRef]
- Spackman, M.; Pearman, A.D.; Phillips, L.D. Multi-Criteria Analysis: A Manual; 2009; ISBN 9781409810230. [Google Scholar]
- De Brucker, K.; Verbeke, A.; Macharis, C. The Applicability of Multicriteria-Analysis To the Evaluation of Intelligent Transport Systems (Its). Res. Transp. Econ. 2004, 8, 151–179. [Google Scholar] [CrossRef]
- Hamurcu, M.; Eren, T. Electric bus selection with multicriteria decision analysis for green transportation. Sustainability 2020, 12, 2777. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.H.; Willis, J.R.; Deng, H.; Pan, H. Task oriented weighting in multi-criteria analysis. Eur. J. Oper. Res. 1999, 119, 130–146. [Google Scholar] [CrossRef]
- Feizi, A.; Joo, S.; Kwigizile, V.; Oh, J.S. A pervasive framework toward sustainability and smart-growth: Assessing multifaceted transportation performance measures for smart cities. J. Transp. Heal. 2020, 19, 100956. [Google Scholar] [CrossRef]
- Kügemann, M.; Polatidis, H. Multi-criteria decision analysis of road transportation fuels and vehicles: A systematic review and classification of the literature. Energies 2019, 13, 157. [Google Scholar] [CrossRef] [Green Version]
- Manzolli, J.A.; Trovão, J.P.; Henggeler Antunes, C. Scenario-Based Multi-criteria decision analysis for rapid transit systems implementation in an urban context. Transportation 2021, 7, 100101. [Google Scholar]
- Wołek, M.; Wolanski, M.; Jagiełło, A.; Suchanek, M.; Szmelter, A. 3.4. Conventional Full Evaluation. The Test Results; Elaborated within the ELIPTIC prject (H2020 Programme contract nr636012). Department for Communities and Local Government: London, UK, 2018. Available online: https://www.eliptic-project.eu/sites/default/files/ELIPTIC%20D3.4%20Conventional%20Full%20Evaluation%2C%20the%20test%20results.pdf (accessed on 11 May 2021).
- Bartłomiejczyk, M.; Połom, M. Possibilities for developing electromobility by using autonomously powered trolleybuses based on the example of Gdynia. Energies 2021, 14, 2971. [Google Scholar] [CrossRef]
Tool/Method | Main Advantages of Analysis | Main Disadvantages of Analysis | Main Objective of Analysis | Data Required for Analysis | Result of Analysis |
---|---|---|---|---|---|
Cost–benefit analysis (CBA) | Valuates all impacts using a financial value Includes an evaluation of environmental and other external effects Less subjective than some other analyses, e.g., cost-effectiveness analysis, cost–utility analysis and multiple-criteria analysis Takes into account the change in the value of money over time Allows for comparison of very different investments | Some benefits are hard to quantify and measure Problems with an estimation if the benefits apply only to selected groups of residents Different methods of valuation of external effects may elicit different estimates | Maximise the utility of transport investment to society | Quantitative | Net present value of the investment |
Multi-criteria analysis (MCA) | It can structure an assessment of a complex problem It makes it possible to see all of the factors that influence investment decisions (not only financial) | The process of assigning weights is subjective by nature Takes into account the preferences of a relatively small group of decision-makers and stakeholders, rather than the general population | Quantification and scoring of quantitative and qualitative criteria and parameters of different investments options | Quantitative and/or qualitative | The optimal variant of investment in terms of the adopted criteria |
Cost-effectiveness analysis (CEA) | Allows for comparison of investments that achieve the same outcome It represents the cost per natural unit of the outcome | It does not allow for easy comparison between investments that produce different outcomes | Minimise the cost of obtaining a unit effect (for example, vehicle kilometre or passenger kilometre) | Quantitative | Cost per unit of the effect of investments (for example, vehicle kilometre or passenger kilometre) |
Life-cycle assessment (LCA) | Takes into account complex dependencies and environmental effects, including scarcity Allows comparison between investments and selection of the investment that has the lowest impact on the environment | Requires value judgment on environmental priorities | Minimise the environmental impact of investment | Quantitative | Assessment of the environmental consequences of each stage of the vehicle life cycle |
Life-cycle cost analysis (LCCA) | Allows comparison of the life cycle costs of various investment variants. Allows exploration of trade-offs between low initial costs and long-term cost savings. | Some life-cycle costs may not be obvious Benefits are not included Some costs vary greatly over time Relies heavily on the estimation | Optimisation of investment and operating costs in the vehicle life cycle | Quantitative | Assessment of the total costs throughout the vehicle life cycle |
The total cost of ownership (TCO) | Reflects the actual cost of purchasing and ownership rather than the pure acquisition of vehicles. Enables the achievement of a cost-saving improvement of investment | Some costs of ownership may not be obvious Benefits are not included Relies heavily on the estimation Some costs vary greatly over time | Combines purchase, operating, capital and disposal costs to identify the most economical choice of investment | Quantitative | Assessment of the total cost of vehicle ownership |
Criterion | Description (Method of Calculation) |
---|---|
Coverage of the bus route with traction network | Length of catenary on a given bus route/total length of the route |
Servicing densely settled areas | Length of the route in dense areas/total length of the route |
Intensity of exploitation | Vehicle—km’s/length of the route |
Spatial availability of the line | Number of stops/route length |
Weekly supply variation | Supply of the given bus line on Sunday/supply of the given bus line on working days |
Rolling stock utility | Stops (hours)/total number of vehicle-hours per vehicle per working day |
Criterion | Value before Taking into Account the Weights of Individual Criteria | Criterion Weight | Value after Taking into Account the Weights of Individual Criteria | ||||||
---|---|---|---|---|---|---|---|---|---|
Bus Line 114 | Bus Line 172 | Bus Line 180 | Bus Line 181 | Bus Line 114 | Bus Line 172 | Bus Line 180 | Bus Line 181 | ||
Coverage of the bus route with traction network | 0.36 | 0.39 | 0.66 | 0.63 | 0.20 | 0.07 | 0.08 | 0.13 | 0.12 |
Servicing densely settled areas | 0.62 | 0.78 | 0.70 | 0.75 | 0.21 | 0.13 | 0.16 | 0.15 | 0.16 |
Intensivity of exploitation | 0.51 | 0.38 | 0.37 | 1,00 | 0.17 | 0.09 | 0.07 | 0.06 | 0.17 |
Spatial availability of the line | 0.96 | 0.69 | 0.68 | 0.60 | 0.18 | 0.17 | 0.12 | 0.12 | 0.11 |
Weekly supply variation | 0.65 | 0.83 | 0.13 | 0.61 | 0.12 | 0.08 | 0.10 | 0.02 | 0.07 |
Rolling stock utility | 0.86 | 1.00 | 0.91 | 0.90 | 0.13 | 0.11 | 0.13 | 0.12 | 0.11 |
Sum | 0.646 | 0.651 | 0.590 | 0.746 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołek, M.; Jagiełło, A.; Wolański, M. Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis. Energies 2021, 14, 6391. https://doi.org/10.3390/en14196391
Wołek M, Jagiełło A, Wolański M. Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis. Energies. 2021; 14(19):6391. https://doi.org/10.3390/en14196391
Chicago/Turabian StyleWołek, Marcin, Aleksander Jagiełło, and Michał Wolański. 2021. "Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis" Energies 14, no. 19: 6391. https://doi.org/10.3390/en14196391
APA StyleWołek, M., Jagiełło, A., & Wolański, M. (2021). Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis. Energies, 14(19), 6391. https://doi.org/10.3390/en14196391