Optimized Modulation Method for Common-Mode Voltage Reduction in H7 Inverter
Abstract
:1. Introduction
2. Analysis of Common-Mode Voltage in H7 Inverter
2.1. Common-Mode Voltage Analysis in Three-Phase Two-Level Inverter
2.2. Common-Mode Voltage in H7 Inverter
3. Proposed Modulation Method for Common-Mode Voltage Reduction in H7 Inverter
3.1. Modulation Strategy of Three-Phase Reference Voltages
3.2. Switching Method of the Seventh Switch in H7 Inverter
3.3. Implementation of the Proposed Algorithm
4. Simulation Result
5. Experimental Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, S.; Lipo, T.A.; Fitzgerald, D. Modeling of motor bearing currents in PWM inverter drives. IEEE Trans. Ind. Appl. 1996, 32, 1365–1370. [Google Scholar] [CrossRef]
- Julian, A.L.; Oriti, G.; Lipo, T.A. Elimination of common-mode voltage in three-phase sinusoidal power converters. IEEE Trans. Power Electron. 1999, 14, 982–989. [Google Scholar] [CrossRef]
- Zhong, E.; Lipo, T.A. Improvements in EMC performance of inverter-fed motor drives. IEEE Trans. Ind. Appl. 1995, 31, 1247–1256. [Google Scholar] [CrossRef]
- Ogasawara, S.; Ayano, H.; Akagi, H. Measurement and Reduction of EMI Radiated by a PWM Inverter-Fed AC Motor Drive Systems. IEEE Trans. Ind. Appl. 1997, 33, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.M.; Yamada, K.; Kume, T. Common mode current attenuation techniques for use with PWM drives. IEEE Trans. Power Electron. 2001, 16, 248–255. [Google Scholar] [CrossRef]
- Cacciato, M.; Consoli, A.; Scarcella, G.; Testa, A. Reduction of common-mode currents in PWM inverter motor drives. IEEE Trans. Ind. Appl. 1999, 35, 469–476. [Google Scholar] [CrossRef]
- Ogasawara, S.; Akagi, H. Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter-Fed AC Motor Drive Systems. IEEE Trans. Ind. Appl. 1996, 32, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lin, H.; Yang, H. The Characteristics and Suppression of Common-Mode Current for Brushless Doubly Fed Generator System. IEEE Trans. Electromagn. Compat. 2020, 62, 2265–2276. [Google Scholar] [CrossRef]
- von Jouanne, A.; Zhang, H.; Wallace, K.A. An evaluation of mitigation techniques for bearing currents, EMI and overvoltages in ASD applications. IEEE Trans. Ind. Appl. 1998, 34, 1113–1122. [Google Scholar] [CrossRef]
- Muetze, A.; Binder, A. Calculation of Circulating Bearing Currents in Machines of Inverter-Based Drive Systems. IEEE Trans. Ind. Electron. 2007, 54, 932–938. [Google Scholar] [CrossRef]
- Akagi, H.; Hasegawa, H.; Doumoto, T. Design and performance of a passive EMI filter for use with a voltage-source PWM inverter having sinusoidal output voltage and zero common-mode voltage. IEEE Trans. Power Electron. 2004, 19, 1069–1076. [Google Scholar] [CrossRef]
- Akagi, H.; Doumoto, T. A passive EMI filter for preventing high-frequency leakage current from flowing through the grounded inverter heat sink of an adjustable-speed motor drive system. IEEE Trans. Ind. Appl. 2005, 41, 1215–1223. [Google Scholar] [CrossRef]
- Silva, M.; Hensgens, N.; Oliver, J.; Alou, P.; García, Ó.; Cobos, J.A. New considerations in the input filter design of a three-phase buck-type PWM rectifier for aircraft applications. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition IEEE ECCE, Phoenix, AZ, USA, 17–22 September 2011. [Google Scholar]
- Tarateeraseth, V.; See, K.Y.; Canavero, F.G.; Chang, R.W.Y. Systematic Electromagnetic Interference Filter Design Based on Information from In-Circuit Impedance Measurements. IEEE Trans. Electromagn. Compat. 2010, 52, 588–589. [Google Scholar] [CrossRef] [Green Version]
- Rivas, D.; Moran, L.; Dixon, J.W.; Espinoza, J.R. Improving passive filter compensation performance with active techniques. IEEE Trans. Ind. Electron. 2003, 50, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.C.; Sul, S.K. Generalization of active filters for EMI reduction and harmonics compensation. IEEE Trans. Ind. Appl. 2006, 42, 545–551. [Google Scholar] [CrossRef]
- Heldwein, M.L.; Ertl, H.; Biela, J.; Kolar, J.W. Implementation of a Transformerless Common-Mode Active Filter for Offline Converter Systems. IEEE Trans. Ind. Electron. 2010, 57, 1772–1786. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yang, X.; Wang, Z. An active EMI filtering technique for improving passive filter low-frequency performance. IEEE Trans. Electromagn. Compat. 2006, 48, 172–177. [Google Scholar] [CrossRef]
- Shin, D.; Kim, S.N.; Jeong, G.S.; Park, J.S.; Park, J.W.; Han, K.J.; Kim, J.G. Analysis and Design Guide of Active EMI Filter in a Compact Package for Reduction of Common-Mode Conducted Emissions. IEEE Trans. Electromagn. Compat. 2015, 57, 660–671. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Shin, D.G.; Kim, J.G. A Transformer-Isolated Common-Mode Active EMI Filter without Additional Components on Power Lines. IEEE Trans. Power Electron. 2019, 34, 2244–2257. [Google Scholar] [CrossRef]
- Takahashi, S.; Ogasawara, S.; Takemoto, M.; Orikawa, K.; Tamate, M. Common-Mode Voltage Attenuation of an Active Common-Mode Filter in a Motor Drive System Fed by a PWM Inverter. IEEE Trans. Ind. Appl. 2019, 55, 2721–2730. [Google Scholar] [CrossRef]
- Lee, H.D.; Sul, S.K. A common mode voltage reduction in boost rectifier/inverter system by shifting active voltage vector in a control period. IEEE Trans. Power Electron. 2000, 15, 1094–1101. [Google Scholar]
- Tallam, R.M.; Kerkman, R.J.; Leggate, D.; Lukaszewski, R.A. Common-Mode Voltage Reduction PWM Algorithm for AC Drives. IEEE Trans. Ind. Appl. 2010, 46, 1959–1969. [Google Scholar] [CrossRef]
- Hou, C.C.; Shih, C.C.; Cheng, P.T.; Hava, A.M. Common-Mode Voltage Reduction Pulsewidth Modulation Techniques for Three-Phase Grid-Connected Converters. IEEE Trans. Power Electron. 2013, 28, 1971–1979. [Google Scholar] [CrossRef]
- Hava, A.M.; Un, E. Performance Analysis of Reduced Common-Mode Voltage PWM Methods and Comparison with Standard PWM Methods for Three-Phase Voltage-Source Inverters. IEEE Trans. Power Electron. 2009, 24, 241–252. [Google Scholar] [CrossRef]
- Un, E.; Hava, A.M. A Near-State PWM Method with Reduced Switching Losses and Reduced Common-Mode Voltage for Three-Phase Voltage Source Inverters. IEEE Trans. Ind. Appl. 2009, 45, 782–793. [Google Scholar] [CrossRef]
- Lai, Y.S.; Shyu, F.S. Optimal common-mode Voltage reduction PWM technique for inverter control with consideration of the dead-time effects-part I: Basic development. IEEE Trans. Ind. Appl. 2004, 40, 1605–1612. [Google Scholar] [CrossRef]
- Li, H.; Zhang, A.; Xiang, X. An Improved Modulation Method for Suppressing High Frequency Common-Mode Voltage in SiC Motor Drive System. World Electr. Veh. J. 2021, 12, 111. [Google Scholar] [CrossRef]
- Freddy, T.K.S.; Rahim, N.A.; Hew, W.P.; Che, H.S. Modulation Techniques to Reduce Leakage Current in Three-Phase Transformerless H7 Photovoltaic Inverter. IEEE Trans. Ind. Electron. 2015, 62, 322–331. [Google Scholar] [CrossRef]
- Guo, X.; Wang, N.; Wang, B.; Lu, Z.; Blaabjerg, F. Evaluation of Three-Phase Transformerless DC-Bypass PV Inverters for Leakage Current Reduction. IEEE Trans. Power Electron. 2020, 35, 5918–5927. [Google Scholar] [CrossRef]
- Lee, S.H.; Jung, J.H.; Hwang, S.I.; Kim, J.M.; Cho, H.J. Common Mode Voltage Reduction Method for H7 Inverter Using DPWM Offset Based Modulation Technique. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE) IEEE ECCE, Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Wu, B. High-Power Converters and AC Drives; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 101–108. [Google Scholar]
Parameter | Value | |
---|---|---|
DC-Link | DC voltage | |
DC capacitor | 4700 uF | |
Motor | Rated active power | 1.8 kW |
Rated rotational speed | 1500 rpm | |
Rated torque | 11.5 N·m | |
Rated rms line current | 14.8 A | |
Pole pair | 4 | |
Rotor inertia | 0.0064 kg m2 | |
Controller | Switching frequency | 100 KHz |
SVPWM | MDPWM | Proposed Method | |
---|---|---|---|
Switching frequency | 100KHz | 100KHz | 100KHz |
Modulation index | 0.3 | 0.3 | 0.3 |
Phase current (rms) | 7.4A | 7.4A | 7.4A |
Leakage current (peak to peak) | 800mA | 360mA | 216mA |
CMV | |||
Efficiency (%) | 92.357 | 91.856 | 92.028 |
Current THD (%) | 0.745 | 1.108 | 1.110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negesse, B.B.; Park, C.-H.; Lee, S.-H.; Hwang, S.-W.; Kim, J.-M. Optimized Modulation Method for Common-Mode Voltage Reduction in H7 Inverter. Energies 2021, 14, 6409. https://doi.org/10.3390/en14196409
Negesse BB, Park C-H, Lee S-H, Hwang S-W, Kim J-M. Optimized Modulation Method for Common-Mode Voltage Reduction in H7 Inverter. Energies. 2021; 14(19):6409. https://doi.org/10.3390/en14196409
Chicago/Turabian StyleNegesse, Belete Belayneh, Chang-Hwan Park, Seung-Hwan Lee, Seon-Woong Hwang, and Jang-Mok Kim. 2021. "Optimized Modulation Method for Common-Mode Voltage Reduction in H7 Inverter" Energies 14, no. 19: 6409. https://doi.org/10.3390/en14196409
APA StyleNegesse, B. B., Park, C. -H., Lee, S. -H., Hwang, S. -W., & Kim, J. -M. (2021). Optimized Modulation Method for Common-Mode Voltage Reduction in H7 Inverter. Energies, 14(19), 6409. https://doi.org/10.3390/en14196409