Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing
Abstract
:1. Introduction
- To develop a best first search (BFS) based artificial intelligence heuristic algorithm using IoMT. It supports data fitness and stability for IoT communication.
- To develop a trusted algorithm for finding harsh actions on real-time IoMT data and enhance the sureness level in an unreliable and unpredictable situation.
- To develop a security algorithm using cryptosystems and ensure to support online protection for health data against interferences.
2. Related Work
3. Proposed Model
- The medical sensors are constraint-oriented devices with embedded global positioning system (GPS).
- Network edges are mobile, can interact with both medical sensors and the sink node.
- Network edges and sink nodes are robust with high computing resources.
- Nodes can set the neighbor table using position coordinates.
- Malicious machines are deployed for redirecting the health data or flood false data packets on request.
4. Performance Analysis
Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Xie, X.; Yang, L.; Xu, X.; Cai, Y.; Wang, T.; Xie, X. Mobile health technology combats COVID-19 in China. J. Infect. 2021, 82, 159–198. [Google Scholar]
- Rghioui, A.; Sendra, S.; Lloret, J.; Oumnad, A. Internet of things for measuring human activities in ambient assisted living and e-health. Netw. Protoc. Algorithms 2016, 8, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Haseeb, K.; Saba, T.; Lloret, J.; Ahmed, Z. Mobility Support 5G Architecture with Real-Time Routing for Sustainable Smart Cities. Sustainability 2021, 13, 9092. [Google Scholar] [CrossRef]
- Aman, A.H.M.; Hassan, W.H.; Sameen, S.; Attarbashi, Z.S.; Alizadeh, M.; Latiff, L.A. IoMT amid COVID-19 pandemic: Application, architecture, technology, and security. J. Netw. Comput. Appl. 2021, 174, 102886. [Google Scholar] [CrossRef] [PubMed]
- Ali, S. Combatting against COVID-19 & misinformation: A systematic review. Hum. Arenas 2020, 1–16. [Google Scholar] [CrossRef]
- Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. Efficient data uncertainty management for health industrial internet of things using machine learning. Int. J. Commun. Syst. 2021, 34. [Google Scholar] [CrossRef]
- Pustokhina, I.V.; Pustokhin, D.A.; Gupta, D.; Khanna, A.; Shankar, K.; Nguyen, G.N. An effective training scheme for deep neural network in edge computing enabled Internet of medical things (IoMT) systems. IEEE Access 2020, 8, 107112–107123. [Google Scholar] [CrossRef]
- Alsubaei, F.; Abuhussein, A.; Shandilya, V.; Shiva, S. IoMT-SAF: Internet of medical things security assessment framework. Internet Things 2019, 8, 100123. [Google Scholar] [CrossRef]
- Parra, L.; Rocher, J.; Sendra, S.; Lloret, J. An Energy-Efficient IoT Group-Based Architecture for Smart Cities. In Energy Conservation for IoT Devices; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–127. [Google Scholar]
- Xu, X.; Huang, Q.; Zhang, Y.; Li, S.; Qi, L.; Dou, W. An LSH-based offloading method for IoMT services in integrated cloud-edge environment. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 16, 1–19. [Google Scholar] [CrossRef]
- Mohiyuddin, A.; Javed, A.R.; Chakraborty, C.; Rizwan, M.; Shabbir, M.; Nebhen, J. Secure Cloud Storage for Medical IoT Data using Adaptive Neuro-Fuzzy Inference System. Int. J. Fuzzy Syst. 2021, 1–13. [Google Scholar] [CrossRef]
- Rehman, A.; Haseeb, K.; Saba, T.; Kolivand, H. M-SMDM: A model of security measures using Green Internet of Things with Cloud Integrated Data Management for Smart Cities. Environ. Technol. Innov. 2021, 24, 101802. [Google Scholar] [CrossRef]
- Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of security and privacy for the Internet of Medical Things (IoMT). In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019. [Google Scholar]
- Saba, T.; Haseeb, K.; Shah, A.A.; Rehman, A.; Tariq, U.; Mehmood, Z. A Machine-Learning-Based Approach for Autonomous IoT Security. IT Prof. 2021, 23, 69–75. [Google Scholar] [CrossRef]
- Bakhsh, S.T. Multi-tier mobile healthcare system using heterogeneous wireless sensor networks. J. Med Imaging Health Inform. 2017, 7, 1372–1379. [Google Scholar] [CrossRef]
- Yin, H.; Jha, N.K. A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 228–241. [Google Scholar] [CrossRef]
- Haseeb, K.; Islam, N.; Saba, T.; Rehman, A.; Mehmood, Z. LSDAR: A light-weight structure based data aggregation routing protocol with secure internet of things integrated next-generation sensor networks. Sustain. Cities Soc. 2020, 54, 101995. [Google Scholar] [CrossRef]
- Rahman, G.M.; Wahid, K.A. LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol in an IoT-Enabled WSN for Wide-Area Remote Monitoring. Remote Sens. 2020, 12, 3131. [Google Scholar] [CrossRef]
- Mehmood, A.; Lv, Z.; Lloret, J.; Umar, M.M. ELDC: An artificial neural network based energy-efficient and robust routing scheme for pollution monitoring in WSNs. IEEE Trans. Emerg. Top. Comput. 2017, 8, 106–114. [Google Scholar] [CrossRef]
- Alvear, O.; Calafate, C.T.; Cano, J.-C.; Manzoni, P. Crowdsensing in smart cities: Overview, platforms, and environment sensing issues. Sensors 2018, 18, 460. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Haseeb, K.; Saba, T.; Lloret, J.; Tariq, U. Secured Big Data Analytics for Decision-Oriented Medical System Using Internet of Things. Electronics 2021, 10, 1273. [Google Scholar] [CrossRef]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A survey on wireless body area networks: Technologies and design challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- El Atrash, M.; Abdalla, M.A.; Elhennawy, H.M. A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications. IEEE Trans. Antennas Propag. 2019, 67, 6378–6388. [Google Scholar] [CrossRef]
- Oueida, S.; Kotb, Y.; Aloqaily, M.; Jararweh, Y.; Baker, T. An edge computing based smart healthcare framework for resource management. Sensors 2018, 18, 4307. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.M.; Majumder, D. Healthcare solution based on machine learning applications in IOT and edge computing. Int. J. Pure Appl. Math. 2018, 119, 1473–1484. [Google Scholar]
- Wu, F.; Qiu, C.; Wu, T.; Yuce, M.R. Edge-based hybrid system implementation for long-range safety and healthcare IoT applications. IEEE Internet Things J. 2021, 8, 9970–9980. [Google Scholar] [CrossRef]
- Saba, T.; Haseeb, K.; Ahmed, I.; Rehman, A. Secure and energy-efficient framework using Internet of Medical Things for e-healthcare. J. Infect. Public Health 2020, 13, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hossain, M.S. An Internet of medical things-enabled edge computing framework for tackling COVID-19. IEEE Internet Things J. 2021, 1. [Google Scholar] [CrossRef]
- Gupta, D.; Bhatt, S.; Gupta, M.; Tosun, A.S. Future smart connected communities to fight covid-19 outbreak. Internet Things 2021, 13, 100342. [Google Scholar] [CrossRef]
- Arifeen, M.M.; Al Mamun, A.; Kaiser, M.S.; Mahmud, M. Blockchain-Enable Contact Tracing for Preserving User Privacy during COVID-19 Outbreak. 2020. Available online: https://www.preprints.org/manuscript/202007.0502/v1 (accessed on 30 July 2021).
- Ullah, Z.; Ahmed, I.; Razzaq, K.; Naseer, M.K.; Ahmed, N. DSCB: Dual sink approach using clustering in body area network. Peer Peer Netw. Appl. 2019, 12, 357–370. [Google Scholar] [CrossRef]
- Lone, T.A.; Rashid, A.; Gupta, S.; Gupta, S.K.; Rao, D.S.; Najim, M.; Srivastava, A.; Kumar, A.; Umrao, L.S.; Singhal, A. Securing communication by attribute-based authentication in HetNet used for medical applications. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, I.; Khan, A.; Uddin, M.I.; Alyami, H.; Alosaimi, W. Enabling Clustering for Privacy-Aware Data Dissemination Based on Medical Healthcare-IoTs (MH-IoTs) for Wireless Body Area Network. J. Healthc. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Emam, A.; Abdellatif, A.A.; Mohamed, A.; Harras, K.A. Edgehealth: An energy-efficient edge-based remote mhealth monitoring system. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Karmore, S.; Bodhe, R.; Al-Turjman, F.; Kumar, R.L.; Pillai, S. IoT based humanoid software for identification and diagnosis of Covid-19 suspects. IEEE Sens. J. 2020, 1. [Google Scholar] [CrossRef]
- Lin, H.; Garg, S.; Hu, J.; Wang, X.; Piran, M.J.; Hossain, M.S. Privacy-enhanced data fusion for COVID-19 applications in intelligent Internet of medical Things. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Ahamad, S.S.; Pathan, A.-S.K. A formally verified authentication protocol in secure framework for mobile healthcare during COVID-19-like pandemic. Connect. Sci. 2020, 1–23. [Google Scholar] [CrossRef]
- Chervyakov, N.; Babenko, M.; Tchernykh, A.; Kucherov, N.; Miranda-López, V.; Cortés-Mendoza, J.M. AR-RRNS: Configurable reliable distributed data storage systems for Internet of Things to ensure security. Future Gener. Comput. Syst. 2019, 92, 1080–1092. [Google Scholar] [CrossRef]
- Haque, R.U.; Hasan, A.; Jiang, Q.; Qu, Q. Privacy-preserving K-nearest neighbors training over blockchain-based encrypted health data. Electronics 2020, 9, 2096. [Google Scholar] [CrossRef]
- Azar, J.; Makhoul, A.; Barhamgi, M.; Couturier, R. An energy efficient IoT data compression approach for edge machine learning. Future Gener. Comput. Syst. 2019, 96, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Boyle, E.; Gilboa, N.; Ishai, Y. Breaking the circuit size barrier for secure computation under DDH. In Proceedings of the 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Riley, G.F.; Henderson, T.R. The ns-3 network simulator. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [Google Scholar]
Comparative Approaches | Contributions and Research Challenges |
---|---|
Existing work |
|
Parameters | Values |
---|---|
Initial energy | 2j |
Sensors | 25 to 125 |
Deployment | Random |
Malicious nodes | 10 |
Data flow | CBR |
Nodes transmission range | 3 m |
Medical sensors | 100 |
Packet size | 64 bits |
Simulation time | 1000 s |
Initial energy | 2j |
Network edges | 3 to 15 |
Speed of network edges | 1 to 5 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Saba, T.; Haseeb, K.; Larabi Marie-Sainte, S.; Lloret, J. Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies 2021, 14, 6414. https://doi.org/10.3390/en14196414
Rehman A, Saba T, Haseeb K, Larabi Marie-Sainte S, Lloret J. Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies. 2021; 14(19):6414. https://doi.org/10.3390/en14196414
Chicago/Turabian StyleRehman, Amjad, Tanzila Saba, Khalid Haseeb, Souad Larabi Marie-Sainte, and Jaime Lloret. 2021. "Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing" Energies 14, no. 19: 6414. https://doi.org/10.3390/en14196414
APA StyleRehman, A., Saba, T., Haseeb, K., Larabi Marie-Sainte, S., & Lloret, J. (2021). Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies, 14(19), 6414. https://doi.org/10.3390/en14196414