Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstocks
2.2. Feedstock Particle Size Distribution
2.3. Pelletization Process
2.4. Fuel Characteristics
2.4.1. Bulk Density
2.4.2. Durability
2.4.3. Moisture Content
2.4.4. Pellet Quality Standard
2.5. Statistical Analyses
3. Results and Discussion
3.1. Particle Size Distribution
3.2. Evaluation of Fuel Characteristics
3.2.1. Pellet Size
3.2.2. Bulk Density
3.2.3. Moisture Content
3.2.4. Durability
3.2.5. Calorific Value
3.2.6. Ash
3.2.7. Chlorine and Sulphur
3.2.8. Heavy Metals
3.2.9. Regression Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bio-SRF | Biomass solid refuse fuel |
CO | Spent coffee grounds pellet |
CP10 | Mixed pellet of 90% pine sawdust and 10% spent coffee grounds |
CP30 | Mixed pellet of 70% pine sawdust and 30% spent coffee grounds |
CP50 | Mixed pellet of 50% pine sawdust and 50% spent coffee grounds |
CP70 | Mixed pellet of 30% pine sawdust and 70% spent coffee grounds |
CP90 | Mixed pellet of 10% pine sawdust and 90% spent coffee grounds |
FC | Fixed carbon |
GHG | Greenhouse gas |
HHV | High heating value |
LHV | Low heating value |
PI | Pine sawdust pellet |
PS | Pine sawdust |
SCG | Spent coffee grounds |
VM | Volatile matter |
References
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Yılmaz, S.; Selim, H. A review on the methods for biomass to energy conversion systems design. Renew. Sustain. Energy Rev. 2013, 25, 420–430. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Z.; Deng, J.; Li, Z.; Duan, L.; Zhang, Q.; Hao, J.; Jiang, J. Characteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in China. Sci. Total Environ. 2019, 662, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Korea Energy Economics Institute. 2018 Energy Info. Korea. Available online: http://www.keei.re.kr/keei/download/EnergyInfo2018.pdf (accessed on 1 August 2018).
- Limousy, L.; Jeguirim, M.; Dutournie, P.; Kraiem, N.; Lajili, M.; Said, R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 2013, 107, 323–329. [Google Scholar] [CrossRef]
- Korea Forest Service. Wood Pellet Statistics. 2018. Available online: https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardArticle.do?nttId=3132691&bbsId=BBSMSTR_1069&pageUnit=10&pageIndex=19&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchWrd=&ctgryLrcls=&ctgryMdcls=&ctgrySmcls=&ntcStartDt=&ntcEndDt=&mn=NKFS_06_09_01&orgId= (accessed on 6 September 2018).
- Korea Forest Service. Pellet Economics. Available online: https://www.forest.go.kr/kfsweb/kfi/kfs/cms/cmsView.do?mn=NKFS_02_01_11_04_01&cmsId=FC_001019 (accessed on 10 September 2019).
- Lisowski, A.; Olendzki, D.; Swietochowski, A.; Dabrowska, M.; Mieszkalski, L.; Ostrowska-Ligeza, E.; Stasiak, M.; Klonowski, J.; Piatek, M. Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets. Renew. Energy 2019, 142, 173–183. [Google Scholar] [CrossRef]
- Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine addition on quality parameters of straw barley straw pellets. Fuel Process. Technol. 2011, 92, 699–706. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A.; Harfield, D. Development of agri-pellet production cost and optimum size. Bioresour. Technol. 2010, 101, 5609–5621. [Google Scholar] [CrossRef]
- International Coffee Organization. Coffee Market Report—November 2018. Available online: http://www.ico.org/Market-Report-18-19-e.asp (accessed on 22 November 2018).
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesias, M.; Morales, F.J.; Martin-Cabrejas, M.A.; del Castillo, M.D. Use of spent coffee. Grounds as food ingredient in bakery products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Kucera, D.; Petrik, S.; Marova, I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N. Biotechnol. 2015, 32, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Tokimoto, T.; Kawasaki, N.; Nakamura, T.; Akutagawa, J.; Tanada, S. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J. Colloid Interface Sci. 2005, 281, 56–61. [Google Scholar] [CrossRef] [PubMed]
- National Assembly Research Service of Korea. Bioenergy Production by Establishing a System for Collecting Spent Coffee Grounds (Korean). 2020. Available online: https://www.nars.go.kr/eng/report/view.do?cmsCode=CM0146&brdSeq=31561 (accessed on 23 December 2020).
- Bio-Bean Ltd. Coffee Recycling. Available online: https://www.bio-bean.com/renewals/coffee-recycling/ (accessed on 23 December 2020).
- Bottani, E.; Tebaldi, L.; Volpi, A. The role of ICT in supporting spent coffee grounds collection and valorization: A quantitative assessment. Sustainability 2019, 11, 6572. [Google Scholar] [CrossRef] [Green Version]
- Goh, C.S.; Cocchi, M.; Junginger, M.; Marchal, D.; Daniela, T.; Hennig, C.; Heinimö, J.; Nikolaisen, L.; Schouwenberg, P.-P.; Bradley, D.; et al. Wood pellet market and trade: A global perspective. Biofuels Bioprod. Biorefin. 2013, 7, 24–42. [Google Scholar] [CrossRef]
- Kamil, M.; Ramadan, K.M.; Olabi, A.G.; Shanableh, A.; Ghenai, C.; Al Naqbi, A.K.; Awad, O.I.; Ma, X. Comprehensive evaluation of the life cycle of liquid and solid fuels derived from recycled coffee waste. Resour. Conserv. Recycl. 2019, 150, 104446. [Google Scholar] [CrossRef]
- Kim, Y.S.; Woo, D.G.; Kim, T.H. Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds. Environ. Eng. Res. 2020, 25, 470–478. [Google Scholar] [CrossRef]
- Miranda, T.; Arranz, J.I.; Montero, I.; Román, S.; Rojas, C.V.; Nogales, S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 2012, 103, 91–96. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Karwaczyńska, U.; Sporek, M. The possibility of disposing of spent coffee ground with energy recycling. J. Ecol. Eng. 2015, 16, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, S.J.; Oh, K.C.; Cho, L.; Kim, M.J.; Jeong, I.S.; Lee, C.G.; Kim, D.H. Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy 2020, 190, 116380. [Google Scholar] [CrossRef]
- Nosek, R.; Tun, M.M.; Juchelkova, D. Energy utilization of spent coffee grounds in the form of pellets. Energies 2020, 13, 1235. [Google Scholar] [CrossRef] [Green Version]
- Gomez-de la Cruz, F.J.; Cruz-Peragón, F.; Casanova-Peláez, P.J.; Palomar-Carnicero, J.M. A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics. Fuel Process. Technol. 2015, 130, 188–196. [Google Scholar] [CrossRef]
- Zabava, B.S.; Voicu, G.; Dinca, M.N.; Ungureanu, N.; Ferdes, M. Durability of pellets obtained from energy plants: Review. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; Volume 17, pp. 1838–1843. [Google Scholar]
- Relova, I.; Vignote, S.; León, M.A.; Ambrosio, Y. Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biomass Bioenergy 2009, 33, 1351–1357. [Google Scholar] [CrossRef]
- Ishii, K.; Furuichi, T. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 2014, 34, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Poddar, S.; Kamruzzaman, M.; Sujan, S.M.A.; Hossain, M.; Jamal, M.S.; Gafur, M.A.; Khanam, M. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 2014, 131, 43–48. [Google Scholar] [CrossRef]
- Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process. Technol. 2008, 89, 1324–1329. [Google Scholar] [CrossRef]
- Crawford, R.J.; Throne, J.L. (Eds.) Rotational Moulding Technology; William Andrew Publishing: New York, NY, USA, 2002. [Google Scholar]
- Tumuluru, J.S. Effect of process variables on density and durability of pellets made from high moisture corn stover. Biosyst. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Lu, D.; Tabil, L.G.; Wang, D.; Wang, G.; Emami, S. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 2014, 69, 287–296. [Google Scholar] [CrossRef]
- Miranda, T.; Montero, I.; Sepúlveda, F.J.; Arranz, J.I.; Rojas, C.V.; Nogales, S. A review of pellets from different sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef] [Green Version]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.M.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Telmo, C.; Lousada, J. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Duca, D.; Riva, G.; Pedretti, E.F.; Toscano, G. Wood pellet quality with respect to EN 14961–2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- Aho, M.; Yrjas, P.; Taipale, R.; Hupa, M.; Silvennoinen, J. Reduction of superheater corrosion by co-firing risky biomass with sewage sludge. Fuel 2010, 89, 2376–2386. [Google Scholar] [CrossRef]
- Theis, M.; Skrifvars, B.-J.; Zevenhoven, M.; Hupa, M.; Tran, H. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel 2006, 85, 1992–2001. [Google Scholar] [CrossRef]
- Vainio, E.; Kinnunen, H.; Laurén, T.; Brink, A.; Yrjas, P.; DeMartini, N.; Hupa, M. Low-temperature corrosion in co-combustion of biomass and solid recovered fuels. Fuel 2016, 184, 957–965. [Google Scholar] [CrossRef]
- Hupa, M.; Karlström, O.; Vainio, E. Biomass combustion technology development–It is all about chemical details. Proc. Combust. Inst. 2017, 36, 113–134. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Mixed biomass pellets for thermal energy production: A review of combustion models. Appl. Energy 2014, 127, 135–140. [Google Scholar] [CrossRef]
- Rural Development Administration. Fertilizer Process Specification and Standards. Notification No. 2014-135 of the Rural Development Administration. Available online: https://www.law.go.kr/LSW/admRulInfoP.do?admRulSeq=2200000013684 (accessed on 3 August 2018).
- Biswas, A.K.; Yang, W.; Blasiak, W. Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Process. Technol. 2011, 92, 1711–1717. [Google Scholar] [CrossRef]
- Zhang, W.; Tong, Y.D.; Wang, H.H.; Chen, L.; Ou, L.B.; Wang, X.J.; Liu, G.H.; Zhu, Y. Emission of metals from pelletized and uncompressed biomass fuels combustion in rural household stoves in China. Sci. Rep. 2014, 4, 5611–5616. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, S.; Castilla, C.; Morin, C.; Merlet-Machour, N.; Carrasco-Cabrera, L.; Medaerts, F.; Lavanant, H.; Afonso, C. Particulate inorganic salts and trace element emissions of a domestic boiler fed with five commercial brands of wood pellets. Environ. Sci. Pollut. Res. 2020, 27, 18221–18231. [Google Scholar] [CrossRef] [PubMed]
- Boman, C.; Öhman, M.; Nordin, A. Trace element enrichment and behavior in wood pellet production and combustion processes. Energy Fuels 2006, 20, 993–1000. [Google Scholar] [CrossRef]
Feedstock | Proximate Analysis (wt.% db) | Elementals Analysis (wt.% db) | ||||||
---|---|---|---|---|---|---|---|---|
Ash | FC | VM | Car | Har | Oar | Nar | Sar | |
Spent coffee ground | 2.12 | 11.51 | 78.44 | 61.13 | 8.99 | 26.60 | 2.91 | 0.37 |
Pine sawdust | 0.2 | 13.5 | 86.3 | 47.10 | 6.10 | 46.27 | <0.1 | <0.01 |
Blends Pellet | Nominal Name | SCG Content (wt.%) |
---|---|---|
SCG | CO | SCG PS 100 |
CP10 | SCG 10 | |
CP30 | SCG 30 | |
SCG:PS | CP50 | SCG 50 |
CP70 | SCG 70 | |
CP90 | SCG 90 | |
PS | PS | PS 100 |
Description (Unit) | Specification |
---|---|
Inner matrix-diameter (mm) | 410 |
Dices (n) | 324 |
Dice diameter (mm) | 8 |
Length of dices (mm) | 55 |
Press rollers (n) | 2 |
Nominal power of press motor (kW) | 22 |
Max. production capacity (kg/h) | 500 |
Specifications | Wood Pellet | Bio-SRF | |||
---|---|---|---|---|---|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | ||
Diameter (mm) | 6–8 | 6–8 | 6–8 | 6–8 | ≤50 |
Length (mm) | ≤32 | ≤32 | ≤32 | ≤32 | ≤100 |
Bulk density (kg/m3) | ≥640 | ≥600 | ≥550 | ≥500 | - |
Moisture (wt.% wb) | ≤10 | ≤15 | ≤15 | ≤15 | ≤10 |
Ash (wt.%) | ≤0.7 | ≤1.5 | ≤3.0 | ≤6.0 | ≤15 |
Durability (%) | ≥97.5 | ≥97.5 | ≥95 | ≥95 | - |
Calorific value (MJ/kg) | ≥18.0 | ≥18.0 | ≥16.9 | ≥16.9 | ≥13.18 |
Biomass content (wt.%) | - | - | - | - | ≥95 |
S (%) | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.6 |
Cl (%) | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.5 |
As (mg/kg) | ≤1.0 | ≤1.0 | ≤1.0 | ≤1.0 | ≤5.0 |
Cd (mg/kg) | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤5.0 |
Cr (mg/kg) | ≤10 | ≤10 | ≤10 | ≤10 | ≤70 |
Cu (mg/kg) | ≤10 | ≤10 | ≤10 | ≤10 | - |
Pb (mg/kg) | ≤10 | ≤10 | ≤10 | ≤10 | ≤100 |
Ni (mg/kg) | ≤10 | ≤10 | ≤10 | ≤10 | - |
Specifications | CO | CP90 | CP70 | CP50 | CP30 | CP10 | PS |
---|---|---|---|---|---|---|---|
Diameter × Length (mm) | 5 × 7 | 5 × 9 | 6 × 11 | 9 × 18 | 8 × 21 | 8 × 14 | 8 × 15 |
Bulk density (kg/m3) | 710 | 680 | 500 | 510 | 580 | 710 | 760 |
Moisture (wt.% wb) | 8.7 | 15.5 | 12.1 | 9.6 | 9.5 | 7.0 | 7.8 |
Ash (wt.%) | 2.5 | 2.4 | 2.0 | 1.5 | 1.5 | 0.8 | 0.5 |
Durability (%) | 67.9 | 67.3 | 82.8 | 87.1 | 96.4 | 98.8 | 98.7 |
HHV (MJ/kg) | 23.1 | 22.6 | 23.2 | 22.1 | 21.5 | 20.9 | 20.7 |
LHV (MJ/kg) | 20.1 | 17.5 | 18.7 | 18.4 | 17.9 | 18.0 | 17.6 |
Biomass content (wt.%) | 98 | 97 | 98 | 98 | 99 | 99 | 99 |
S (%) | 0.12 | 0.11 | 0.11 | 0.08 | 0.04 | 0.02 | 0.01 |
Cl (%) | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.01 | <0.01 |
As (mg/kg) | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
Cd (mg/kg) | <0.10 | <0.10 | 0.11 | 0.19 | 0.35 | 0.79 | 0.73 |
Cr (mg/kg) | <1.0 | <1.0 | <1.0 | 1.1 | <1.0 | <1.0 | <1.0 |
Cu (mg/kg) | 14.6 | 14.6 | 12.2 | 9.5 | 5.6 | 3.9 | 1.7 |
Pb (mg/kg) | <1.5 | <1.5 | 1.8 | 4.3 | 5.4 | 6.2 | 8.1 |
Ni (mg/kg) | <1.2 | <1.2 | <1.2 | 1.2 | <1.2 | <1.2 | <1.2 |
Variable | Linear Model | SE | F-Value | t-Value | R-Square |
---|---|---|---|---|---|
Diameter | 0.732 | 25.071 *** | −5.007 *** | 0.569 | |
Length | 2.278 | 15.864 *** | −3.983 *** | 0.455 | |
Durability | 2.851 | 143.483 *** | −11.978 *** | 0.883 | |
Calorific value (HHV) | 0.508 | 32.034 *** | 5.660 *** | 0.628 | |
Ash | 0.105 | 378.105 *** | 19.445 *** | 0.952 | |
Sulphur | 0.016 | 32.203 *** | 5.675 *** | 0.629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, D.-G.; Kim, S.H.; Kim, T.H. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies 2021, 14, 371. https://doi.org/10.3390/en14020371
Woo D-G, Kim SH, Kim TH. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies. 2021; 14(2):371. https://doi.org/10.3390/en14020371
Chicago/Turabian StyleWoo, Duk-Gam, Sang Hyeon Kim, and Tae Han Kim. 2021. "Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder" Energies 14, no. 2: 371. https://doi.org/10.3390/en14020371
APA StyleWoo, D. -G., Kim, S. H., & Kim, T. H. (2021). Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies, 14(2), 371. https://doi.org/10.3390/en14020371