The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pellet Density
3.2. Pellet Hardness
3.3. Polymer Content
3.4. Ash Content and Calorific Value
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lisy, M.; Lisa, H.; Jecha, D.; Balas, M.; Krizan, P. Characteristic Properties of Alternative Biomass Fuels. Energies 2020, 13, 1448. [Google Scholar] [CrossRef] [Green Version]
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanaś, W.; Zukiewicz-Sobczak, W.; Obidziński, S. The use of lignocellulosic waste in the production of pellets for energy purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Smuga-Kogut, M.; Bychto, L.; Walendzik, B.; Cielecka-Piontek, J.; Marecik, R.; Kobus-Cisowska, J.; Grajek, K.; Szymanowska-Powałowska, D. Use of Buckwheat Straw to Produce Ethyl Alcohol Using Ionic Liquids. Energies 2019, 12, 2014. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, J.M.; Jenkins, B.M. Physical and Chemical Properties of Biomass Fuels. Trans. ASAE 1985, 28, 898–902. [Google Scholar] [CrossRef]
- Smuga-Kogut, M.; Wnuk, A.D.; Zgórska, K.; Kubiak, M.S.; Wojdalski, J.; Kupczyk, A.; Szlachta, J.; Luberański, A. Production of ethanol from wheat straw. Pol. J. Chem. Technol. 2015, 17, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Maraver, A.; Popov, V.; Zamorano, M. A review of European standards for pellet quality. Renew. Energy 2011, 36, 3537–3540. [Google Scholar] [CrossRef]
- Dyjakon, A.; Noszczyk, T. The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass. Energies 2019, 12, 2627. [Google Scholar] [CrossRef] [Green Version]
- Kraszkiewicz, A.B.; Kachel-Jakubowska, M.; Niedziołka, I.; Zaklika, B.; Zawislak, K.; Nadulski, R.; Sobczak, P.; Wojdalski, J.; Mruk, R. Impact of various kinds of straw and other raw materials on physical characteristics of pellets. Rocz. Ochr. Srodowiska 2017, 19, 270–287. [Google Scholar]
- Zdanowicz, A.; Chojnacki, J. Mechanical properties of pellet from chicken manure mixed with chopped rye straw. J. Res. Appl. Agric. Eng. 2017, 62, 216–218. [Google Scholar]
- Matúš, M.; Križan, P.; Šooš, Ľ.; Beniak, J. The effect of papermaking sludge as an additive to biomass pellets on the final quality of the fuel. Fuel 2018, 219, 196–204. [Google Scholar] [CrossRef]
- Lu, D.; Tabil, L.G.; Wang, D.; Wang, G.; Emami, S. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 2014, 69, 287–296. [Google Scholar] [CrossRef]
- Chojnacki, J.; Zdanowicz, A. Research into the hardness of pellet from wheat straw with an addition of ground wheat. J. Res. Appl. Agric. Eng. 2017, 62, 19–21. [Google Scholar]
- Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 2011, 92, 699–706. [Google Scholar] [CrossRef]
- Said, N.; Abdel daiem, M.M.; García-Maraver, A.; Zamorano, M. Influence of densification parameters on quality properties of rice straw pellets. Fuel Process. Technol. 2015, 138, 56–64. [Google Scholar] [CrossRef]
- Ishii, K.; Furuichi, T. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 2014, 34, 2621–2626. [Google Scholar] [CrossRef]
- Moliner, C.; Lagazzo, A.; Bosio, B.; Botter, R.; Arato, E. Production, Characterization, and Evaluation of Pellets from Rice Harvest Residues. Energies 2020, 13, 479. [Google Scholar] [CrossRef] [Green Version]
- Kachel, M.; Kraszkiewicz, A.; Subr, A.; Parafiniuk, S.; Przywara, A.; Koszel, M.; Zając, G. Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets. Energies 2020, 13, 819. [Google Scholar] [CrossRef] [Green Version]
- Zdanowicz, A.; Chojnacki, J. Impact of natural binder on pellet quality. In Proceedings of the 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 456–460. [Google Scholar]
- Chojnacki, J.; Ondruska, J.; Kuczynski, W.; Soos, L.; Balasz, B. Emissions from the combustion of solid biofuels. In Proceedings of the 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 70–75. [Google Scholar]
- Skonecki, S.; Potręć, M.; Laskowski, J. Właściwości fizyczne i chemiczne odpadów rolniczych. Acta Agrophysica 2011, 18, 443–455. [Google Scholar]
- Theerarattananoon, K.; Xu, F.; Wilson, J.; Ballard, R.; Mckinney, L.; Staggenborg, S.; Vadlani, P.; Pei, Z.J.; Wang, D.K. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Ind. Crop. Prod. 2011, 33, 325–332. [Google Scholar] [CrossRef]
- Obidziński, S.; Puchlik, M.; Dołżyńska, M. Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion. Energies 2020, 13, 6002. [Google Scholar] [CrossRef]
- Nosek, R.; Werle, S.; Borsukiewicz, A.; Żelazna, A.; Łagód, G. Investigation of Pellet Properties Produced from a Mix of Straw and Paper Sludge. Appl. Sci. 2020, 10, 5450. [Google Scholar] [CrossRef]
- Wang, L.; Skjevrak, G.; Hustad, J.E.; Grønli, M.G.; Skreiberg, O. Efects of additives on barley straw and husk ashes sintering characteristics. Energy Procedia 2012, 20, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liang, J.; Yuan, X.; Li, H.; Li, C.; Xiao, Z.; Huang, H.; Wang, H.; Zeng, G. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 2014, 166, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, A.; Chojnacki, J. Usage of fodder beet tuber pulp as a binder in straw pressure agglomeration. In Proceedings of the 25th International PHD Students Conference (Mendelnet 2018), Brno, Czech Republic, 7–8 November 2018; pp. 472–477. [Google Scholar]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties. Bioenergy Res. 2011, 5, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Colley, Z.; Fasina, O.O.; Bransby, D.; Lee, Y.Y. Moisture Effect on the Physical Characteristics of Switchgrass Pellets. Trans. ASABE 2006, 49, 1845–1851. [Google Scholar] [CrossRef]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Frodeson, S.; Henriksson, G.; Berghel, J. Pelletizing Pure Biomass Substances to Investigate the Mechanical Properties and Bonding Mechanisms. BioResources 2017, 13, 1202–1222. [Google Scholar] [CrossRef] [Green Version]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple Pomace: A Versatile Substrate for Biotechnological Applications. Crit. Rev. Biotechnol. 2008, 1, 1–12. [Google Scholar]
- Maslovarić, M.D.; Vukmirović, D.M.; Čolović, R.R.; Spasevski, N.J.; Jovanović, R.D.; Tolimir, N.T. Pelleting properties and pellet quality of apple pomace. Food Feed Res. 2015, 42, 147–154. [Google Scholar] [CrossRef]
- Maslovarić, M.; Vukmirović, Đ.; Pezo, L.; Čolović, R.; Jovanović, R.; Spasevski, N.; Tolimir, N. Influence of apple pomace inclusion on the process of animal feed pelleting. Food Addit. Contam. Part A 2017, 34, 8. [Google Scholar] [CrossRef]
- Hejft, R.; Obidziński, S.; Jałbrzykowski, M.; Markowski, J. Production of heating pellets with apple pomace content. J. Res. Appl. Agric. Eng. 2016, 61, 29–34. [Google Scholar]
- Alam, M.S.; Pathania, S.; Sharma, A. Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT 2016, 74, 135–144. [Google Scholar] [CrossRef]
- Lotfi Shirazi, S.; Koocheki, A.; Milani, E.; Mohebbi, M. Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. J. Food Sci. Technol. 2020, 57, 2169–2181. [Google Scholar] [CrossRef]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P.S. Waste to worth: Vegetable wastes as animal feed. CAB Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Jiang, B.-H.; Duan, K.-J. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus. Energies 2013, 6, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers 2017, 9, 495. [Google Scholar] [CrossRef]
- Dalla Costa, A.P.; Hermes, V.S.; de Oliveira Rios, A.; Flôres, S.H. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Huaqin, W. CN103494021A—Green Chick Feed for Promoting Growth. Available online: https://worldwide.espacenet.com/patent/search/family/049859361/publication/CN103494021A?q=pn%3DCN103494021A (accessed on 19 November 2020).
- Bożym, M.; Florczak, I.; Zdanowska, P.; Wojdalski, J.; Klimkiewicz, M. An analysis of metal concentrations in food wastes for biogas production. Renew. Energy 2015, 77, 467–472. [Google Scholar] [CrossRef]
- Adamczyk, F. Wpływ wilgotności słomy zbożowej na stopień zagęszczenia uzyskiwanych brykietów. Inżynieria Rol. 2010, 1, 7–13. [Google Scholar]
- Kulig, R. Influence of grinding rate of chosen plant materials on physical properties of material. J. Res. Appl. Agric. Eng. 2010, 55, 59–62. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.; Tabil, L.G.; Adapa, P.; Tilay, A.; George, E.; Ketabi, L.; Dalai, A. Effect of Fuel Additives on Agricultural Straw Pellet Quality. In Proceedings of the SBE/SCGAB 2013 Annual Conference University of Saskatchewan, Saskatoon, Saskatchewan, 7–10 July 2013; pp. 1–13. [Google Scholar]
Relative Moisture Content (%) | Pellet Density (g∙cm−3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Content of Barley Straw | Addition of Carrot Pomace | Addition of Red Beet Pomace | Addition of Applet Pomace | |||||||
100% | 10% | 20% | 30% | 10% | 20% | 30% | 10% | 20% | 30% | |
17.0 | 1.14 | 1.19 | 1.40 | 1.44 | 1.29 | 1.48 | 1.52 | 1.21 | 1.48 | 1.52 |
19.5 | 1.15 | 1.31 | 1.44 | 1.51 | 1.34 | 1.57 | 1.58 | 1.25 | 1.49 | 1.58 |
22.0 | 1.18 | 1.40 | 1.44 | 1.50 | 1.44 | 1.50 | 1.61 | 1.26 | 1.59 | 1.57 |
Contents | Hardness (N) | ||
---|---|---|---|
(%) | Apple Pomace | Carrot Pomace | Red Beet Pomace |
0 | 144.0 | 144.0 | 144.0 |
10 | 197.0 | 312.9 | 325.4 |
20 | 278.7 | 337.7 | 339.8 |
30 | 358.9 | 443.2 | 360.5 |
Materials for Substrate Production | Content [%] | |||||
---|---|---|---|---|---|---|
Lignin | Hemicellulose | Cellulose | ||||
carrot pomace | 5.1 | ±1.9 | 20.5 | ±1.2 | 12.4 | ±2.0 |
red beet pomace | 6.9 | ±2.3 | 15.7 | ±0.6 | 14.6 | ±2.3 |
apple pomace | 8.2 | ±2.5 | 4.0 | ±0.9 | 12.0 | ±2.5 |
straw | 10.1 | ±1.6 | 28.4 | ±1.4 | 37.8 | ±1.5 |
Pellet | Content [%] | |||||
---|---|---|---|---|---|---|
Lignin | Hemicellulose | Cellulose | ||||
straw 70% + carrot pom. 30% | 13.2 | ±2.2 | 8.5 | ±0.7 | 19.1 | ±2.1 |
straw 70% + red beet pomace 30% | 11.0 | ±2.2 | 16.2 | ±1.0 | 12.6 | ±2.1 |
straw 70% + apple pomace 30% | 14.5 | ±0.3 | 10.4 | ±2.8 | 6.1 | ±0.5 |
straw 100% | 15.0 | ±0.2 | 18.4 | ±0.9 | 14.3 | ±0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnacki, J.; Zdanowicz, A.; Ondruška, J.; Šooš, Ľ.; Smuga-Kogut, M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies 2021, 14, 405. https://doi.org/10.3390/en14020405
Chojnacki J, Zdanowicz A, Ondruška J, Šooš Ľ, Smuga-Kogut M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies. 2021; 14(2):405. https://doi.org/10.3390/en14020405
Chicago/Turabian StyleChojnacki, Jerzy, Agnieszka Zdanowicz, Juraj Ondruška, Ľubomír Šooš, and Małgorzata Smuga-Kogut. 2021. "The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw" Energies 14, no. 2: 405. https://doi.org/10.3390/en14020405
APA StyleChojnacki, J., Zdanowicz, A., Ondruška, J., Šooš, Ľ., & Smuga-Kogut, M. (2021). The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies, 14(2), 405. https://doi.org/10.3390/en14020405