A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements
Abstract
:1. Introduction
2. Sustainable Program in Malaysian Public Hospital
3. Naturally Ventilated Ward
4. Climate
4.1. Tropical Climate
4.2. Malaysia Climate
5. Energy Management
5.1. Energy Efficiency
- Buildings with air-conditioned areas exceeding 4000 square meters shall perform the following:
- Designs must comply with MS1525 Code of Practice with Overall Heat Transfer Value (OTTV) not exceeding 50 W/m2 and Roof Heat Transfer Value (RTTV) not exceeding 25 W/m2;
- Provide energy management system for monitoring purposes.
- The heat transfer value (U-value) of the entire roof of the building shall not exceed:
- 0.4 W/m2K for roof weight less than 50 kg/m2;
- 0.6 W/m2K for roof weight exceeding 50 kg/m2.
5.2. Renewable Energy
6. Thermal Comfort
6.1. Patient Thermal Comfort
6.2. Staff Thermal Comfort
7. Thermal Comfort and Energy Saving Improvement
7.1. Photovoltaic/Thermal (PV/T) System
7.2. Heat Pump
7.3. Hybrid PV/T and Heat Pump System
8. Discussion
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, N.M.A.; Zaki, N.I.M.; Husain, M.K.A. Implementation of Sustainable Energy Management Programme in Hospital Langkawi. Int. J. Civ. Eng. Technol. 2019, 10, 1241–1253. [Google Scholar]
- King, M.F.; Noakes, C.J.; Sleigh, P.A. Modelling environmental contamination in hospital single-and four-bed rooms. Indoor Air 2015, 25, 694–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.F.; Hu, Z.B.; Liu, M.; Yang, H.L.; Kong, Q.X.; Liu, Y.H. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 2009, 32, 3–20. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Steemers, K. Energy policy and standard for built environment in China. Renew Energy 2005, 13, 1973–1988. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, Z.J.; Jing, Y.; Zhang, C. Influence analysis of building types and climate zones on energetic, economic and environmental performance of BCHP systems. Appl. Energy 2011, 88, 3097–3112. [Google Scholar] [CrossRef]
- Costa, A.; Keane, M.M.; Torrens, J.I.; Corry, E. Building operation and energy performance: Monitoring, analysis and optimization toolkit. Appl. Energy 2013, 101, 310–316. [Google Scholar] [CrossRef]
- Daouas, N. A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Appl. Energy 2011, 88, 156–164. [Google Scholar] [CrossRef]
- Dongmei, P.; Mingyin, C.; Shiming, D.; Zhongping, L. The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates. Appl. Energy 2012, 97, 313–318. [Google Scholar]
- Joudi, A.; Svedung, H.; Cehlin, M.; Ronnelid, M. Reflective coatings for interior and exterior of buildings and improving thermal performance. Appl. Energy 2013, 103, 562–570. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; de’ Rossi, F.; Turni, G.; Vanoli, G.P. Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning. Appl. Energy 2013, 104, 845–859. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Prime Minister’s Office of Malaysia. Economic Transformation Programme Annual Report; Prime Minister’s Office of Malaysia: Putrajaya, Malaysia, 2013.
- U.N. Climate Change Conference 2009-15th Conference of Parties (COP 15). Available online: https://www.najibrazak.com/en/speeches/u-n-climate-change-conference-2009-15th-conference-of-parties-cop-15/ (accessed on 17 July 2020).
- Malaysia Re-pledges to Achieve 45 Percent CO2 Emission by 2030. Available online: https://www.nst.com.my/news/2016/04/140725/malaysia-re-pledges-achieve-45-cent-co2-emission-2030 (accessed on 17 July 2020).
- Ministry of Health Malaysia. Concession Agreement in Respect of Provision of Hospital Support Services at Contract Hospital; Ministry of Health Malaysia: Putrajaya, Malaysia, 2015.
- Ministry of Health Malaysia. Towards Green Healthcare Facility; Ministy of Health Malaysia: Putrajaya, Malaysia, 2018.
- Abdullah, M.S.I.; Rahman, N.M.A.; Zaidi, T.Z.A.; Kamaluddin, K.A. Latest Development on Sustainability Programme Initiatives in Malaysian Healthcare Facility Management. In Proceedings of the 37th Conference of the ASEAN Federation of Engineering Organisations, Jakarta, Indonesia, 12 September 2019. [Google Scholar]
- Sahamir, S.R.; Zakaria, R. Green assessment criteria for public hospital building development in Malaysia. Procedia Environ. Sci. 2014, 20, 106–115. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. 2019 ASHRAE Handbook-HVAC Applications, SI ed.; ASHRAE: Atlanta, GA, USA, 2019. [Google Scholar]
- Yau, Y.H.; Chandrasegaran, D.; Badarudin, A. The ventilation of multiple-bed hospital wards in the tropics: A review. Build. Environ. 2011, 46, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Zimring, C.; Joseph, A.; Choudhary, R. The Role of the Physical Environment in the Hospital of the 21st Century: A Once-in-a-Lifetime Opportunity; The Center for Health Design: Concord, CA, USA, 2004. [Google Scholar]
- Tai, L.L.; Ng, S.H. National Audit on Adult Intensive Care Units; Ministry of Health Malaysia: Putrajaya, Malaysia, 2005.
- Rubin, H.R.; Owens, A.J.; Golden, G. Status Report (1998): An Investigation to Determine Whether the Built Environment Affects Patients’ Medical Outcomes; Center for Health Design: Martinez, CA, USA, 1998. [Google Scholar]
- Joseph, A.; Rashid, M. The architecture of safety: Hospital design. Curr. Opin. Crit. Care 2007, 13, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Luo, Z.; Liu, J.; Wang, Y.; Lin, Y. Health and economic benefits of building ventilation interventions for reducing indoor PM2. 5 exposure from both indoor and outdoor origins in urban Beijing, China. Sci. Total Environ. 2018, 626, 546–554. [Google Scholar] [CrossRef]
- Escombe, A.R.; Oeser, C.C.; Gilman, R.H.; Navincopa, M.; Ticona, E.; Pan, W.; Martínez, C.; Chacaltana, J.; Rodríguez, R.; Moore, D.A.; et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007, 4, e68. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Li, Y.; Seto, W.H.; Ching, P.; Ching, W.H.; Sun, H.Q. Natural ventilation for reducing airborne infection in hospitals. Build. Environ. 2010, 45, 559–565. [Google Scholar] [CrossRef]
- Chartier, Y.; Pessoa-Silva, C.L. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.K.W.; Li, D.H.W.; Liu, D.; Lam, J.C. Future trends of building heating and cooling loads and energy consumption in different climates. Build. Environ. 2011, 46, 223–234. [Google Scholar] [CrossRef]
- Zaini, N. Thermal Design of the Roofs for Low-Rise Detached Residential Buildings in Malaysia: A Simulation Study of Public Works Department New Quarters Design. Ph.D. Thesis, University Malaya, Kuala Lumpur, Malaysia, 2005. [Google Scholar]
- Mekhilef, S.; Safari, A.; Mustaffa, W.E.S.; Saidur, R.; Omar, R.; Younis, M.A.A. Solar energy in Malaysia: Current state and prospects. Renew. Sustain. Energy Rev. 2012, 16, 386–396. [Google Scholar] [CrossRef]
- Muzathik, A.M. Potential of global solar radiation in Terengganu, Malaysia. Int. J. Energy Eng. 2013, 3, 130–136. [Google Scholar]
- Zain, Z.M.; Taib, M.N.; Baki, S.M.S. Hot and humid climate: Prospect for thermal comfort in residential building. Desalination 2007, 209, 261–268. [Google Scholar] [CrossRef]
- Tang, K.H.D. Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Sci. Total Environ. 2019, 650, 1858–1871. [Google Scholar] [CrossRef]
- Kirimtat, A.; Koyunbaba, B.K.; Chatzikonstantinou, I.; Sariyildiz, S. Review of simulation modeling for shading devices in buildings. Renew. Sustain. Energy Rev. 2016, 53, 23–49. [Google Scholar] [CrossRef]
- Lam, J.C.; Wan, K.K.W.; Wong, S.L.; Lam, T.N.T. Long-term trends of heat stress and energy use implications in subtropical climates. Appl. Energy 2010, 87, 608–612. [Google Scholar] [CrossRef]
- Li, D.H.W.; Wan, K.K.W.; Yang, L.; Lam, J.C. Heat and cold stresses in different climate zones across China: A comparison between the 20th and 21st centuries. Build. Environ. 2011, 46, 1649–1656. [Google Scholar] [CrossRef]
- Wong, S.L.; Wan, K.K.W.; Yang, L.; Lam, J.C. Changes in bioclimates in different climates around the world and implications for the built environment. Build. Environ. 2012, 57, 214–222. [Google Scholar] [CrossRef]
- Nkwetta, D.N.; Smyth, M. The potential applications and advantages of powering solar air-conditioning systems using concentrator augmented solar collectors. Appl. Energy 2012, 89, 380–386. [Google Scholar] [CrossRef]
- Jing, Y.Y.; Bai, H.; Wang, J.J.; Liu, L. Life cycle assessment of a solar combined cooling heating and power system in different operation strategies. Appl. Energy 2012, 92, 843–853. [Google Scholar] [CrossRef]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 2013, 104, 554–567. [Google Scholar] [CrossRef]
- Kamaluddin, K.A.; Imran, M.S.; Yang, S.S. Development of energy benchmarking of Malaysian government hospitals and analysis of energy savings opportunities. J. Build. Perform. Simul. 2016, 7, 72–87. [Google Scholar]
- Kannan, K.S. Malaysian Industrial Energy Audit Guidelines: A Handbook for Energy Auditors, 2nd ed.; Pusat Tenaga Malaysia: Selangor, Malaysia, 2007; pp. 15–45.
- Moghimi, S.; Lim, C.; Mat, S.; Zaharim, A.; Sopian, K. Building energy index (BEI) in large scale hospital: Case study of Malaysia. In Proceedings of the 4th WSEAS International Conference on Recent Reseaches in Geography Geology, Energy, Environment and Biomedicine, Corfu Island, Greece, 14 July 2011. [Google Scholar]
- Moghimi, S.; Azizpour, F.; Mat, S.; Lim, C.H.; Salleh, E.; Sopian, K. Building energy index and end-use energy analysis in large-scale hospitals—Case study in Malaysia. Energy Effic. 2014, 7, 243–256. [Google Scholar] [CrossRef]
- Saidur, R.; Hasanuzzaman, M.; Yogeswaran, S.; Mohammed, H.A.; Hossain, M.S. An end-use energy analysis in a Malaysian public hospital. Energy 2010, 35, 4780–4785. [Google Scholar] [CrossRef]
- Saidur, R.; Hasanuzzaman, M.; Mahlia, T.M.I.; Rahim, N.A.; Mohammed, H.A. Chillers energy consumption, energy savings and emission analysis in an institutional buildings. Energy 2011, 36, 5233–5238. [Google Scholar] [CrossRef]
- Day, J.K.; Gunderson, D.E. Understanding high performance buildings: The link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction. Build. Environ. 2015, 84, 114–124. [Google Scholar] [CrossRef]
- Majid, M.Z.; Keyvanfar, A.; Shafaghat, A.; Golzarpoor, H.; Ganjbakhsh, H.; Arianmehr, A. Conceptual Intelligent Building (IB) Design Framework to Improve the Level of Usern Comfort Towards Sustainable Energy Efficient Strategies: Proposal Validation OIDA. Int. J. Sustain. Dev. 2013, 4, 11–15. [Google Scholar]
- Department of Standards Malaysia. Energy Efficiency and Use of Renewable Energy for Non-Residential Buildings—Code of Practice, 3rd ed.; Department of Standards Malaysia: Putrajaya, Malaysia, 2019.
- Moghimi, S.; Bakhtyar, B.; Azizpour, F.; Sopian, K.; Lim, C.H.; Mat, S.; Salleh, E. Maximization of energy saving and minimization of insulation cost in a tropical hospital: A case study in Malaysia. WSEAS Trans. Environ. Dev. 2013, 9, 105–115. [Google Scholar]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Available online: https://meih.st.gov.my/statistics (accessed on 27 July 2020).
- Hashim, H.; Ho, W.S. Renewable energy policies and initiatives for a sustainable energy future in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 4780–4787. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H. A review on energy scenario and sustainable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 639–647. [Google Scholar] [CrossRef]
- Shafie, S.M.; Mahlia, T.M.I.; Masjuki, H.H.; Andriyana, A. Current energy usage and sustainable energy in Malaysia: A review. Renew. Sustain. Energy Rev. 2011, 15, 4370–4377. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, E.C. Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia. Appl. Energy 2013, 104, 297–305. [Google Scholar] [CrossRef]
- Energy Commission. Peninsular Malaysia Electricity Supply Industry Outlook 2016; Energy Commission: Putrajaya, Malaysia, 2016.
- Oh, T.H.; Hasanuzzaman, M.; Selvaraj, J.; Teo, S.C.; Chua, S.C. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth—An update. Renew. Sustain. Energy Rev. 2018, 81, 3021–3031. [Google Scholar] [CrossRef]
- Available online: https://www.thestar.com.my/metro/smebiz/2015/12/03/paving-the-way-with-green-technology-financial-schemes-involving-green-technology-projects-create-mo (accessed on 30 July 2020).
- Available online: https://www.thestar.com.my/lifestyle/features/2015/03/09/solar-farm-boosts-malaysias-renewable-energy-supply (accessed on 30 July 2020).
- Available online: https://www.thestar.com.my/news/nation/2017/06/13/help-increase-availability-of-solar-energy-via-1-post-1-watt (accessed on 30 July 2020).
- Nem Brochure (Malay). Available online: http://www.seda.gov.my/2019/05/nem-brochure-malay/ (accessed on 30 July 2020).
- Mathiesen, B.V.; Lund, H.; Karisson, K. 100% renewable energy systems, climate mitigation and economic growth. Appl. Energy 2011, 88, 488–501. [Google Scholar] [CrossRef]
- Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13. [Google Scholar] [CrossRef]
- He, W.; Zhou, J.; Hou, J.; Chen, C.; Ji, J. Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar. Appl. Energy 2013, 107, 89–97. [Google Scholar] [CrossRef]
- ANSI/ASHRAE. Standard 55–2017 Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2017. [Google Scholar]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Artmann, N.; Manz, H.; Heiselberg, P. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Appl. Energy 2007, 84, 187–201. [Google Scholar] [CrossRef]
- Lan, L.; Tushar, W.; Otto, K.; Yuen, C.; Wood, K.L. Thermal comfort improvement of naturally ventilated patient wards in Singapore. Energy Build. 2017, 154, 499–512. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P.; Cheng, M.J.; Chien, J.H. Patient thermal comfort requirement for hospital environments in Taiwan. Build. Environ. 2007, 42, 2980–2987. [Google Scholar] [CrossRef]
- Khodakarami, J.; Nasrollahi, N. Thermal comfort in hospitals—A literature review. Renew. Sustain. Energy Rev. 2012, 16, 4071–4077. [Google Scholar] [CrossRef]
- Azizpour, F.; Moghimi, S.; Salleh, E.; Mat, S.; Lim, C.H.; Sopian, K. Thermal comfort assessment of large-scale hospitals in tropical climates: A case study of University Kebangsaan Malaysia Medical Centre (UKMMC). Energy Build. 2013, 64, 317–322. [Google Scholar] [CrossRef]
- Ormandy, D.; Ezratty, V. Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
- Sattayakorn, S.; Ichinose, M.; Sasaki, R. Clarifying thermal comfort of healthcare occupants in tropical region: A case of indoor environment in Thai hospitals. Energy Build. 2017, 149, 45–57. [Google Scholar] [CrossRef]
- Yau, Y.H.; Chew, B.T. Thermal comfort study of hospital workers in Malaysia. Indoor Air 2009, 19, 500–510. [Google Scholar] [CrossRef]
- Hashiguchi, N.; Hirakawa, M.; Tochihara, Y.; Kaji, Y.; Karaki, C. Thermal environment and subjective responses of patients and staff in a hospital during winter. J. Physiol. Anthropol. Appl. Hum. Sci. 2005, 24, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Khodakarami, J.; Knight, I. Measured thermal comfort conditions in Iranian hospitals for patients and staff. In Proceedings of the Clima 2007 WellBeing Indoors, Helsinki, Finland, 10–14 June 2007. [Google Scholar]
- Ottenheijm, E.M.M.; Loomans, M.G.L.C.; Kort, H.S.M.; Trip, A. Thermal comfort assessment in a Dutch hospital setting–model applicability. In Proceedings of the 14th International Conference on Indoor Air Quality and Climate, Ghent, Belgium, 3–8 July 2016. [Google Scholar]
- Martinez-Lera, S.; Ballester, J.; Martinez-Lera, J. Analysis and sizing of thermal storage in combined heating, cooling and power plants for buildings. Appl. Energy 2013, 106, 127–142. [Google Scholar] [CrossRef]
- Li, S.; Sui, J.; Jin, H.; Zheng, J. Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy. Appl. Energy 2013, 112, 673–681. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Keshavarz, A. Sizing the prime mover of a residential microcombined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates. Energy 2013, 54, 291–301. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Zingre, K.T.; Wan, M.P.; Chang, V.W.C.; Wong, S.K.; Toh, W.B.T.; Lee, I.Y.L. Thermal performance of concrete-based roofs in tropical climate. Energy Build. 2014, 76, 392–401. [Google Scholar] [CrossRef]
- Moosavi, L.; Mahyuddin, N.; Ghafar, N. Atrium cooling performance in a low energy office building in the Tropics, a field study. Build. Environ. 2015, 94, 384–394. [Google Scholar] [CrossRef]
- Barbosa, S.; Ip, K.; Southall, R. Thermal comfort in naturally ventilated buildings with double skin façade under tropical climate conditions: The influence of key design parameters. Energy Build. 2015, 109, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Lomas, K.J.; Giridharan, R. Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free-running buildings: A case-study of hospital wards. Build. Environ. 2012, 55, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y.C.; Muhieldeen, M.W. Saving Energy Costs by Combining Air-Conditioning and Air Circulation using CFD to Achieve Thermal Comfort in the Building. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 58, 84–99. [Google Scholar]
- Hadorn, J.C. Solar and Heat Pump Systems for Residential Buildings, 1st ed.; Ernst & Sohn: Berlin, Germany, 2015. [Google Scholar]
- Verhelst, C.; Degrauwe, D.; Logist, F.; Van Impe, J.; Helsen, L. Multi-objective optimal control of an air-to-water heat pump for residential heating. Build. Simul. 2012, 5, 281–291. [Google Scholar] [CrossRef]
- Ozgener, O.; Hepbasli, A. A review on the energy and exergy analysis of solar assisted heat pump systems. Renew. Sustain. Energy Rev. 2007, 11, 482–496. [Google Scholar] [CrossRef]
- Omojaro, P.; Breitkopf, C. Direct expansion solar assisted heat pumps: A review of applications and recent research. Renew. Sustain. Energy Rev. 2013, 22, 33–45. [Google Scholar] [CrossRef]
- Amin, Z.M.; Hawlader, M.N.A. A review on solar assisted heat pump systems in Singapore. Renew. Sustain. Energy Rev. 2013, 26, 286–293. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S.; Dash, P.R. Solar systems and their integration with heat pumps: A review. Energy Build. 2015, 87, 395–412. [Google Scholar] [CrossRef]
- Jonas, D.; Frey, G.; Theis, D. Simulation and performance analysis of combined parallel solar thermal and ground or air source heat pump systems. Sol. Energy 2017, 150, 500–511. [Google Scholar] [CrossRef]
- Li, Y.H.; Kao, W.C. Taguchi optimization of solar thermal and heat pump combisystems under five distinct climatic conditions. Appl. Therm. Eng. 2018, 133, 283–297. [Google Scholar] [CrossRef]
- Menegon, D.; Persson, T.; Haberl, R.; Bales, C.; Haller, M. Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test. Renew. Energy 2020, 146, 1337–1353. [Google Scholar] [CrossRef]
- Qureshi, U.; Baredar, P.; Kumar, A. Effect of weather conditions on the Hybrid solar PV/T Collector in variation of Voltage and Current. Int. J. Res. 2014, 1, 872–879. [Google Scholar]
- Denholm, P.; Margolis, R.M. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 2007, 35, 2852–2861. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Energetic and financial sustainability of solar assisted heat pump heating systems in Europe. Sustain. Cities Soc. 2017, 33, 70–84. [Google Scholar] [CrossRef]
- Katsumata, N.; Nakada, Y.; Minemoto, T.; Takakura, H. Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data. Sol. Energy Mater. Sol. Cells 2011, 95, 199–202. [Google Scholar] [CrossRef]
- Agrawal, B.; Tiwari, G.N. Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl. Energy 2010, 87, 417–426. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering, 2nd ed.; John Wiley & Sons: Chichester, West Sussex, UK, 2011. [Google Scholar]
- Noro, M.; Lazzarin, R.; Bagarella, G. Advancements in hybrid photovoltaic-thermal systems: Performance evaluations and applications. Energy Procedia 2016, 101, 496–503. [Google Scholar] [CrossRef]
- Chow, T.T.; Hand, J.W.; Strachan, P.A. Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Appl. Therm. Eng. 2003, 23, 2035–2049. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. Effect of environmental variables on photovoltaic performance-based on experimental studies. Int. J. Civ. Mech. Energy Sci. 2016, 2, 1–8. [Google Scholar]
- Gasparin, F.P.; Bühler, A.J.; Rampinelli, G.A.; Krenzinger, A. Statistical analysis of I–V curve parameters from photovoltaic modules. Sol. Energy 2016, 131, 30–38. [Google Scholar] [CrossRef]
- Al-Sabounchi, A.M.; Yalyali, S.A.; Al-Thani, H.A. Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions. Renew. Energy 2013, 53, 71–78. [Google Scholar] [CrossRef]
- Kapsalis, V.; Karamanis, D. On the effect of roof added photovoltaics on building’s energy demand. Energy Build. 2015, 108, 195–204. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Tlili, I.; Abdul Baseer, M.; Safaei, M.R. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: Experimental assessment and efficiency improvement. Appl. Sci. 2019, 9, 1877. [Google Scholar] [CrossRef] [Green Version]
- Sarafraz, M.M.; Tlili, I.; Tian, Z.; Bakouri, M.; Safaei, M.R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Physica A 2019, 534, 122146. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Goodarzi, M.; Tlili, I.; Alkanhal, T.A.; Arjomandi, M. Thermodynamic potential of a high-concentration hybrid photovoltaic/thermal plant for co-production of steam and electricity. J. Therm. Anal. Calorim. 2020, 1–10. [Google Scholar] [CrossRef]
- Chow, T.T.; He, W.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; Ji, J. Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system. Appl. Therm. Eng. 2008, 28, 1356–1364. [Google Scholar] [CrossRef]
- Mojumder, M.S.S.; Uddin, M.M.; Alam, I.; Enam, H.K. Study of hybrid photovoltaic thermal (PV/T) solar system with modification of thin metallic sheet in the air channel. J. Energy Technol. Policy 2011, 3, 47–55. [Google Scholar]
- Ibrahim, A.; Fudholi, A.; Sopian, K.; Othman, M.Y.; Ruslan, M.H. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Convers. Manag. 2014, 77, 527–534. [Google Scholar] [CrossRef]
- Kiran, S.; Devadiga, U. Performance analysis of hybrid PV/Thermal systems. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 80–86. [Google Scholar]
- Ahn, J.G.; Kim, J.H.; Kim, J.T. A study on experimental performance of air-type PV/T collector with HRV. Energy Procedia 2015, 78, 3007–3012. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Pei, G.; Ji, J.; Yang, M.; Su, Y.; Xu, N. Numerical and experimental study on a PV/T system with static miniature solar concentrator. Sol. Energy 2015, 120, 565–574. [Google Scholar] [CrossRef]
- Good, C.; Andresen, I.; Hestnes, A.G. Solar energy for net zero energy buildings—A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems. Sol. Energy 2015, 122, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Alzaabi, A.A.; Badawiyeh, N.K.; Hantoush, H.O.; Hamid, A.K. Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. Int. J. Smart Grid Clean Energy 2014, 3, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Palaskar, V.N.; Deshmukh, S.P. Waste heat recovery study of spiral flow heat exchanger used in hybrid solar system with reflectors. Int. J. Energy Sci. 2015, 5, 6. [Google Scholar] [CrossRef]
- Daghigh, R.; Ruslan, M.H.; Zaharim, A.; Sopian, K. Monthly performance of a photovoltaic thermal (PV/T) water heating system. In Proceedings of the 6th IASME/WSEAS International Conference on Energy & Environment, Cambridge, UK, 23–25 February 2011. [Google Scholar]
- Jahromi, S.N.; Vadiee, A.; Yaghoubi, M. Exergy and economic evaluation of a commercially available PV/T collector for different climates in Iran. Energy Procedia 2015, 75, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Hazami, M.; Riahi, A.; Mehdaoui, F.; Nouicer, O.; Farhat, A. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions. Energy 2016, 107, 78–94. [Google Scholar] [CrossRef]
- Hu, J.; Chen, W.; Yang, D.; Zhao, B.; Song, H.; Ge, B. Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Appl. Energy 2016, 173, 40–51. [Google Scholar] [CrossRef]
- Rounis, E.D.; Athienitis, A.K.; Stathopoulos, T. Multiple-inlet Building Integrated Photovoltaic/Thermal system modelling under varying wind and temperature conditions. Sol. Energy 2016, 139, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Mojumder, J.C.; Chong, W.T.; Ong, H.C.; Leong, K.Y. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build. 2016, 130, 272–285. [Google Scholar] [CrossRef]
- Yazdanifard, F.; Ebrahimnia-Bajestan, E.; Ameri, M. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew. Energy 2016, 99, 295–306. [Google Scholar] [CrossRef]
- Al-Shamani, A.N.; Sopian, K.; Mat, S.; Hasan, H.A.; Abed, A.M.; Ruslan, M.H. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers. Manag. 2016, 124, 528–542. [Google Scholar] [CrossRef]
- Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Ventura, C. Experimental photovoltaic-thermal power plants based on TESPI panel. Sol. Energy 2016, 133, 305–314. [Google Scholar] [CrossRef]
- Khanjari, Y.; Pourfayaz, F.; Kasaeian, A.B. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers. Manag. 2016, 122, 263–278. [Google Scholar] [CrossRef]
- Su, D.; Jia, Y.; Huang, X.; Alva, G.; Tang, Y.; Fang, G. Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids. Energy Convers. Manag. 2016, 120, 13–24. [Google Scholar] [CrossRef]
- Othman, M.Y.; Hamid, S.A.; Tabook, M.A.S.; Sopian, K.; Roslan, M.H.; Ibarahim, Z. Performance analysis of PV/T Combi with water and air heating system: An experimental study. Renew. Energy 2016, 86, 716–722. [Google Scholar] [CrossRef]
- Mohanraj, M.; Belyayev, Y.; Jayaraj, S.; Kaltayev, A. Research and developments on solar assisted compression heat pump systems–A comprehensive review (Part A: Modeling and modifications). Renew. Sustain. Energy Rev. 2018, 83, 90–123. [Google Scholar] [CrossRef]
- Daghigh, R.; Ruslan, M.H.; Sulaiman, M.Y.; Sopian, K. Review of solar assisted heat pump drying systems for agricultural and marine products. Renew. Sustain. Energy Rev. 2010, 14, 2564–2579. [Google Scholar] [CrossRef]
- Fadhel, M.I.; Sopian, K.; Daud, W.R.W.; Alghoul, M.A. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce. Renew. Sustain. Energy Rev. 2011, 15, 1152–1168. [Google Scholar] [CrossRef]
- Ni, L.; Dong, J.; Yao, Y.; Shen, C.; Qv, D.; Zhang, X. A review of heat pump systems for heating and cooling of buildings in China in the last decade. Renew. Energy 2015, 84, 30–45. [Google Scholar] [CrossRef]
- Chu, J.; Cruickshank, C.A. Solar-assisted heat pump systems: A review of existing studies and their applicability to the Canadian residential sector. J. Sol. Energy Eng. 2014, 136, 041013. [Google Scholar] [CrossRef]
- Hepbasli, A.; Kalinci, Y. A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 2009, 13, 1211–1229. [Google Scholar] [CrossRef]
- Buker, M.S.; Riffat, S.B. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renew. Sustain. Energy Rev. 2016, 55, 399–413. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Hepbasli, A.; Erbay, Z.; Icier, F.; Colak, N.; Hancioglu, E. A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications. Renew. Sustain. Energy Rev. 2009, 13, 85–99. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in heat pump systems: A review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Austin, B.T.; Sumathy, K. Transcritical carbon dioxide heat pump systems: A review. Renew. Sustain. Energy Rev. 2011, 15, 4013–4029. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 2014, 70, 441–454. [Google Scholar] [CrossRef]
- Hepbasli, A.; Biyik, E.; Ekren, O.; Gunerhan, H.; Araz, M. A key review of wastewater source heat pump (WWSHP) systems. Energy Convers. Manag. 2014, 88, 700–722. [Google Scholar] [CrossRef]
- Fischer, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Hasanuzzaman, M.; Rahim, N.A. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Ammar, A.A.; Sopian, K.; Alghoul, M.A.; Elhub, B.; Elbreki, A.M. Performance study on photovoltaic/thermal solar-assisted heat pump system. J. Therm. Anal. Calorim. 2019, 136, 79–87. [Google Scholar] [CrossRef]
Type of Room | Average Minimum Hourly Rate of Natural Ventilation (Litter/Second) | Statement |
---|---|---|
Normal ward | 60 l/s every patient | Applies to other health care areas such as the corridor where emergency cases occur |
Airborne precaution rooms | 160 l/s every patient | Applies only to new facilities and major renovations |
Corridor | 2.5 l/s every m3 | For spaces that do not have a fixed number of patients |
System/Strategy | Improve Thermal Comfort | Provide Space Cooling | Low Energy Consumption | Use Renewable Energy |
---|---|---|---|---|
Passive design strategies [20,71,84,85,86] | √ | × | √ | × |
Ceiling fan [87] | √ | × | √ | × |
Air conditioning unit [88] | √ | √ | × | × |
PV/T and heat pump [41,82,89,90] | √ | √ | √ | √ |
PV and heat pump [91,92,93,94] | √ | √ | √ | √ |
Solar thermal and heat pump [95,96,97] | √ | × | × | √ |
Author | Study Location | Cooling Method | PV Efficiency | Thermal Efficiency |
---|---|---|---|---|
Mojumder et al. [114] | Bangladesh | Water | 9.3% | 30.0% |
Ibrahim et al. [115] | Malaysia | Water | 11.4% | 55.0–62.0% |
Kiran and Devadiga [116] | India | Water | 8.2% | 57.9% |
Ahn et al. [117] | South Korea | Air | 15.0% | 23.0% |
Li et al. [118] | China | Air | 10.6% | 50.0% |
Good et al. [119] | Norway | Air | 12.0% | 71.5% |
Alzaabi et al. [120] | UAE | Water | 15.0–20.0% | 60.0–70.0% |
Palaskar and Deshmukh [121] | India | Water | 12.4% | 71.4% |
Daghigh et al. [122] | Malaysia | Water | 8.9% | 90.0% |
Jahromi et al. [123] | Iran | Water | 9.7% | 54.7% |
Hazami et al. [124] | Tunisia | Air | 15.0% | 50.0% |
Hu et al. [125] | China | Air | 7.7% | 28.0% |
Rounis et al. [126] | Canada | Air | 16.5% | 48.0% |
Mojumder et al. [127] | Malaysia | Air | 13.8% | 56.0% |
Yazdanifard et al. [128] | Iran | Water | 17.0% | 70.0% |
Al-Shamani et al. [129] | Malaysia | Water | 13.5% | 81.7% |
Rosa-Clot et al. [130] | Italy | Water | 13.2% | 62.0% |
Khanjari et al. [131] | Iran | Water | 13.2% | 55.0% |
Su et al. [132] | China | Water and air | 11.8% | 64.4% |
Othman et al. [133] | Malaysia | Water and air | 17.0% | 76.0% |
Author | Year | Country | Study Topic |
---|---|---|---|
Ozgener and Hepbasli [91] | 2007 | Turkey | Solar assisted heat pumps |
Hepbasli et al. [142] | 2009 | Turkey | Gas engine drive heat pumps |
Chua et al. [143] | 2010 | China | Advances in heat pump systems |
Austin and Sumathy [144] | 2011 | Canada | Carbon dioxide heat pumps |
Omojaro and Breitkopf [92] | 2013 | Germany | Direct expansion solar assisted heat pumps |
Amin and Hawlader [93] | 2013 | Singapore | Solar assisted heat pumps in Singapore |
Sarbu and Sebarchievici [145] | 2014 | Romania | Ground source heat pumps |
Hepbasli et al. [146] | 2014 | Turkey | Waste-water heat pumps |
Kamel et al. [94] | 2015 | Canada | Solar energy integration with heat pumps |
Fischer and Madani [147] | 2017 | Germany | Heat pumps in smart grids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, N.M.A.; Haw, L.C.; Fazlizan, A. A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements. Energies 2021, 14, 435. https://doi.org/10.3390/en14020435
Rahman NMA, Haw LC, Fazlizan A. A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements. Energies. 2021; 14(2):435. https://doi.org/10.3390/en14020435
Chicago/Turabian StyleRahman, Noor Muhammad Abd, Lim Chin Haw, and Ahmad Fazlizan. 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements" Energies 14, no. 2: 435. https://doi.org/10.3390/en14020435
APA StyleRahman, N. M. A., Haw, L. C., & Fazlizan, A. (2021). A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements. Energies, 14(2), 435. https://doi.org/10.3390/en14020435