A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms
Abstract
:1. Introduction
2. Model Description
2.1. Wind Turbine Modeling
2.2. Wind Farm Modeling
2.3. Wake Modeling
- The wind farm is large enough for the vertical wind profile to be horizontally homogeneous.
- The thrust on the wind turbine rotors is assumed concentrated at hub height.
- The horizontally homogeneous vertical wind profile is logarithmic both below and above hub height.
- The vertical wind profile is continuous at hub height.
- The height of the planetary boundary layer is considerably larger than the wind turbine hub height.
- Turbulent wind speed fluctuations are horizontally homogeneous.
2.4. Wind Resource Modeling
2.5. Finite-Size Wind Farm Correction
2.6. Cost Models
2.6.1. Cost of Wind Turbine
2.6.2. Cost of Support Structure
2.6.3. Cost of Wind Farm Electrical Grid
2.6.4. Cost of Operation and Maintenance
2.6.5. Levelized Cost of Energy
3. Results
3.1. Wind Farm Cases
- Lillgrund Wind Farm (LG)
- Rødsand 1 (RS1)
- Rødsand 2 (RS2)
- Horns Rev 1 (HR1)
- Horns Rev 2 (HR2)
- Horns Rev 3 (HR3)
3.2. Computed Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a | Calibration constant |
ct | Dimensionless auxiliary parameter |
f | Coriolis parameter |
f (*,*,*) | Weibull probability density function |
fC | Wind turbine capacity factor |
fS(*) | Wind turbine load factor |
fWF | Wind farm capacity factor |
fWT(*|*) | Wind turbine size factor |
h | Hub height |
k | Weibull shape parameter |
u*lo | Friction velocity for the lower part of the boundary layer |
u*hi | Friction velocity for the upper part of the boundary layer |
x | Realization of a stochastic variable X |
z | Height above sea surface in m |
zref | Reference height above sea surface in m |
z0,lo | Roughness length characteristic for the lower part of the boundary layer |
z0,hi | Roughness length characteristic for the upper part of the boundary layer |
A | Wind farm area |
AR | Rotor area |
Cadd | Additional costs in EUR |
CC | Wind farm grid financial costs pr. running meter in EUR |
CG | Aggregated internal wind farm grid costs in EUR |
CFJ | Cost of a jacket support structure in MEUR |
CFM | Cost of a monopile support structure in MEUR |
CO&M(*,*,*) | Cost of operation and maintenance (OM) in EUR |
CO&M,base(*,*) | Cost of operation and maintenance (OM) excluding transportation to site in EUR |
CO&M,L(*) | Cost of transportation associated with operation and maintenance (OM) in EUR |
Cp | Planning costs in MEUR |
CP | Power coefficient |
CP,rated | Power coefficient at rated wind speed |
Cs | Cost of substation in MEUR |
CT | Thrust coefficient |
Ctotal | Total cost of an offshore wind farm installation in MEUR |
CT,rated | Thrust coefficient at rated wind speed |
CWT | Cost of a wind turbine in MEUR |
CWTref | Yearly cost of OM for a reference wind turbine in EUR |
Cyref | Cost of a 20 km export cable in MEUR |
CAPEX | Total cost of an offshore wind farm installation (i.e., capital expenditures) |
D | Rotor diameter |
Dw | Water depth in m |
E | Annual energy production in MWh |
G | Geostrophic wind speed |
Ht | Wind turbine tower height |
LC | Aggregated length of internal wind farm grid cables |
Ls | Average distance from wind farm to the shore |
LT | Wind turbine inter spacing |
LCOE | Levelized cost of energy |
NT | Number of wind farm wind turbines |
NY | Life time of the wind farm in years |
OPEX | Operational expenditures |
P(U) | Wind turbine power production at mean wind speed U |
PE | Average annual wind farm power production |
Pg | Name plate generator capacity |
PG | Generator power |
PR,ref | Rated power of a reference wind turbine in MW |
PS,y | Average annual power yield of a solitary turbine in MWh |
PWF,y | Average annual power yield of a wind farm turbine in MWh |
Py | Yearly average production of a wind turbine in MWh |
PoA | Power density |
PPA | Power purchase agreement |
S | Normalized wind turbine inter spacing |
U | Mean wind speed |
Uh | Mean wind speed at wind turbine hub height |
Uh,0 | Ambient mean wind speed at wind turbine hub height |
Ulo | Mean wind speed at lower part of the boundary layer |
Uhi | Mean wind speed at upper part of the boundary layer |
Uin | Cut-in mean wind speed |
Uout | Cut-out mean wind speed |
Ur | Rated mean wind speed |
X | Stochastic variable |
Y | Distance from site to service harbor in km |
Yref | Reference distance from site to service harbor in km |
α | Auxiliary coefficient |
β | Auxiliary coefficient |
δ | Auxiliary parameter |
ε1 | Auxiliary parameter |
ε2 | Auxiliary parameter |
φ | Latitude |
Auxiliary parameter | |
Fraction of wind turbines erected on monopole foundations | |
κ | von Kármán constant |
λ | Weibull scale parameter |
ρ | Air density |
τw | Surface friction stress |
τw,hi | Surface friction stress |
τw,lo | Surface friction stress |
Γ (*,*) | Incomplete Gamma function |
Ω | Rotational speed of the earth |
Appendix A
Appendix A.1. Average Production under Ambient Flow Conditions
Appendix A.2. Average Production under Wind Farm Flow Conditions
Appendix B
References
- Wind Europe. Offshore Wind in Europe: Key Trends and Statistics 2018; WindEurope: Brussels, Belgium, 2019; Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2018.pdf (accessed on 20 December 2020).
- Department of Energy and Climate Change. Cost of and Financial Support for Offshore Wind; URN 09D/534; Ernst & Young: London, UK, 2009.
- EWEA. Wind Energy—The Facts. Economics: Offshore Developments: The Cost of Energy Generated by Offshore Wind Power. 2009. Available online: http://www.wind-energy-the-facts.org/ (accessed on 20 December 2020).
- Morthorst, P.E.; Kitzing, L. Economics of Building and Operating Offshore Wind Farm. In Offshore Wind Farms; Chong, N., Li, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; ISBN 9780081007792. [Google Scholar]
- Gonzalez-Rodriguez, A.G. Review of offshore wind farm cost components. Energy Sustain. Dev. 2017, 37, 10–19. [Google Scholar] [CrossRef]
- Lundberg, S. Performance Comparison of Wind Park Configurations; Technical Report No. 30R; Chalmers University of Technology: Göteborg, Sweden, 2003; ISSN 1401-6176. [Google Scholar]
- Castro-Santos, L.; Filgueira-Vizoso, A.; Lamas-Galdo, I.; Carral-Couce, L. Methodology to calculate the installation costs of offshore wind farms located in deep waters. J. Clean. Prod. 2018, 170, 1124–1135. [Google Scholar] [CrossRef]
- Ioannou, A.; Angus, A.; Brennan, F. Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters. Energy Sources Part B Econ. Planning Policy 2018, 13, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Myhr, A.; Bjerkseter, C.; Ågotnes, A.; Nygaard, T.A. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy 2014, 66, 714–728. [Google Scholar] [CrossRef] [Green Version]
- Bjerkseter, C.; Ågotnes, A. Levelised Cost of Energy for Offshore Floating Wind Turbine Concepts. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2013. Available online: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/189073 (accessed on 20 December 2020).
- Smart, G.; Smith, A.; Warner, E.; Sperstad, I.B.; Prinsen, B.; Lacal-Arántegui, R. IEA Wind Task 26—Offshore Wind Farm Baseline Documentation. 2016. Available online: www.nrel.gov/docs/fy16osti/66262.pdf (accessed on 20 December 2020).
- Noonan, M.; Stehly, T.; Mora, D.; Kitzing, L.; Smart, G.; Berkhout, V.; Kikuchi, Y. IEA Wind TCP Task 26—Offshore Wind International Comparative Analysis; International Energy Agency Wind Technology Collaboration Programme; US Department of Energy: Washington, DC, USA, 2019.
- Ruijgrok, E.C.M.; van Druten, E.J.; Bulder, B.H. ‘Cost Evaluation of North Sea Offshore Wind Post 2030’. Witteveen+Bos Final Report. 2019. Available online: https://northseawindpowerhub.eu/wp-content/uploads/2019/02/112522-19-001.830-rapd-report-Cost-Evaluation-of-North-Sea-Offshore-Wind....pdf (accessed on 20 December 2020).
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind turbine and wind farm flows: A review. Bound. Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templin, R.J. An Estimate of the Interaction of Windmills in Widespread Arrays; N.A.E. Report LTR-LA-171; N.R.C. Canada: Ottawa, ON, Canada, 1974.
- Newman, B.G. The spacing of wind turbines in large arrays. Energy Convers. 1977, 16, 169–171. [Google Scholar] [CrossRef]
- Frandsen, S.T. On the Wind Speed Reduction in the Centre of Large Clusters of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 1992, 39, 251–265. [Google Scholar] [CrossRef]
- Calaf, M.; Meneveau, C.; Meyers, J. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 2010, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Abkar, M.; Porté-Agel, F. The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies 2013, 6, 2338–2361. [Google Scholar] [CrossRef] [Green Version]
- Meyers, J.; Meneveau, C. Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 2012, 15, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.J.A.M.; Hobbs, B.F.; Ramos, A.; Meneveau, C. Combining economic and fluid dynamic models to determine the optimal spacing in very large wind farms. Wind Energy 2017, 20, 465–477. [Google Scholar] [CrossRef]
- Frandsen, S.T. Turbulence and Turbulence-Generated Structural Loading in Wind Turbine Clusters; Risø R-1188(EN); Risø DTU National Laboratory: Roskilde, Denmark, 2005. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; National Bureau of Standards (NBS); United States Department of Commerce: Washington, DC, USA, 1970.
- Consumer Price Index, Statistics Denmark. Available online: https://www.dst.dk/en/Statistik/emner/priser-og-forbrug/forbrugerpriser/forbrugerprisindeks (accessed on 20 December 2020).
- Buhl, T.; Natarajan, A. Level 0 Cost Models of Offshore Substructure—A Simple Cost Model Including Water Depth; DTU Wind Energy Report; DTU: Roskilde, Denmark, 2015. [Google Scholar]
- Rethoré, P.-E.; Fuglsang, P.; Larsen, G.C.; Buhl, T.; Larsen, T.J.; Madsen, H.A.A. TOPFARM: Multi-fidelity optimization of wind farms. Wind Energy 2014, 17, 1797–1816. [Google Scholar] [CrossRef] [Green Version]
- Larsen, G.C.; Madsen, H.A.; Troldborg, N.; Larsen, T.J.; Réthoré, P.E.; Fuglsang, P.; Ott, S.; Mann, J.; Buhl, T.; Nielsen, M.; et al. TOPFARM—Next Generation Design Tool for Optimization of Wind Farm Topology and Operation; Report Risø-R-1805(EN); Risø DTU National Laboratory: Roskilde, Denmark, 2011. [Google Scholar]
- Berger, R. Offshore Wind Towards 2020; On the Pathway to Cost Competitiveness, April 2013. Available online: http://www.rolandberger.com/media/publications/2013-05-06-rbsc-pub-ffshore_wind_toward_2020.html (accessed on 20 December 2020).
- Chaviaropoulos, P.; Natarajan, A. Definition of Performance Indicators (Pls) and Target Values. INNWIND Report (Deliverable D1.2.2); European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration; Innwind: Roskilde, Denmark, 2014. [Google Scholar]
- Ørsted. Our Offshore Wind Farms 2020. Available online: https://orsted.com/da/Our-business/Offshore-wind/Our-offshore-wind-farms (accessed on 20 December 2020).
- Fremskrivning af PSO-udgifter. The Danish Energy Agency. 2014. Available online: https://ens.dk/sites/ens.dk/files/energistyrelsen/Nyheder/2014/pso-fremskrivning_2014_19052014.pdf (accessed on 20 December 2020).
- Ørsted Wind Power—Rate of Return 2013–2018. Available online: https://www.proff.dk/nogletal/%C3%B8rstedas/gentofte/energiforsyning/GTUF2HI00BD/#annualReports (accessed on 20 December 2020).
- Mahulja, S. Engineering an Optimal Wind Farm. Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2015. [Google Scholar]
- Technology Data—Energy Plants for Electricity and District heating generation. First published August, 2016 by the Danish Energy Agency and Energinet. Available online: https://ens.dk/sites/ens.dk/files/Statistik/technology_data_catalogue_for_el_and_dh_-_0008.pdf (accessed on 20 December 2020).
- Eurostat Statistics Explained 2019. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Inflation_in_the_euro_area (accessed on 20 December 2020).
- Andrew. “Capacity factors at Danish offshore wind farms”. Energynumbers.info. 2020. Available online: http://energynumbers.info/capacity-factors-at-danish-offshore-wind-farms (accessed on 20 December 2020).
- Power Technology. Offshore Wind Farm Lillgrund. 2020. Available online: https://www.power-technology.com/projects/100mwlillgrund/ (accessed on 20 December 2020).
- Gerdes, G.; Tiedemann, A.; Zeelenberg, S. Case Study: European Offshore Wind Farms—A Survey for the Analysis of the Experiences and Lessons Learnt by Developers of Offshore Wind Farms; Final Report; Deutsche WindGuard GmbH, Deutsche Energie-Agentur GmbH (dena) and University of Groningen: Groningen, The Netherlands, 2016. [Google Scholar]
- Power Technology. Rodsand II Wind Farm, Denmark. 2020. Available online: https://www.powertechnology.com/projects/rodsand (accessed on 20 December 2020).
- Vattenfall. 2019. Available online: https://powerplants.vattenfall.com/horns-rev-3 (accessed on 20 December 2020).
- Milepæl i Din Stikkontakt: Masser af Watt på Vej Fra Danmarks Største Havmøllepark. Available online: https://www.dr.dk/nyheder/penge/milepael-i-din-stikkontakt-masser-af-watt-paa-vej-fra-danmarks-stoerste-havmoellepark (accessed on 20 December 2020).
- Weibull data for the North Sea. In Private Communication with Bjarke Tobias Olsen; DTU: Lyngby, Denmark.
- Walker, K.; Adams, N.; Gribben, B.; Gellatly, B.; Nygaard, N.G.; Henderson, A.; Jimémez, M.M.; Schmidt, S.R.; Ruiz, J.R.; Paredes, D.; et al. An evaluation of the predictive accuracy of wake effects models for offshore wind farms. Wind Energy 2016, 19, 979–996. [Google Scholar] [CrossRef]
- Andersen, S.J.; Breton, S.-P.; Witha, B.; Ivanell, S.; Sørensen, J.N. Global trends in the performance of large wind farms based on high-fidelity simulations. Wind Energy Sci. 2020, 5, 1689–1703. [Google Scholar] [CrossRef]
- Dalgic, Y.; Lazakis, I.; Turan, O. Investigation of Optimum Crew Transfer Vessel Fleet for Offshore Wind Farm Maintenance Operations. Wind Eng. 2015, 39, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.; Vejen, F.; Bech, J.I.; Skrzypiński, W.R.; Tilg, A.-M.; Nielsen, M. Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas. Renew. Energy 2020, 149, 91–102. [Google Scholar] [CrossRef]
Pg [MW] | D [m] | Ht [m] | Dw [m] | Ls [km] | A [km2] | Nt | [m/s] | k | CAPEX [MEUR] | E [GWh] | PPA [EUR/MWh] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LG | 2.3 | 93 | 65 | 4–8 | 10 | 4.8 | 48 | 9.7 | 2.4 | 214 | 330 | N/A |
RS1 | 2.3 | 82 | 69 | 6–10 | 13 | 22 | 72 | 10.5 | 2.4 | 322 | 540 | 83.9 |
RS2 | 2.3 | 93 | 68 | 6–10 | 16 | 35 | 90 | 10.5 | 2.4 | 460 | 790 | 83.9 |
HR1 | 2.0 | 80 | 70 | 6–14 | 16 | 20 | 80 | 11.0 | 2.4 | 354 | 580 | 57.6 |
HR2 | 2.3 | 93 | 68 | 9–17 | 30 | 33 | 91 | 11.2 | 2.4 | 524 | 880 | 69.0 |
HR3 | 8.0 | 164 | 105 | 11–19 | 35 | 88 | 49 | 11.5 | 2.4 | 1000 | 1700 | 78.7 |
S [-] | CF [%] | PoA [MW/km2] | OPEX [EUR/MWh] | OPEX [MEUR] | CAPEX [MEUR] | E [GWh] | LCOE [EUR/MWh] | |
---|---|---|---|---|---|---|---|---|
LG | 3.98 | 30.9 | 7.13 | 97.6 | 580 | 206 | 299 | 132 |
R1 | 7.64 | 39.0 | 2.94 | 32.7 | 371 | 336 | 566 | 62.4 |
R2 | 7.50 | 43.6 | 2.58 | 32.5 | 514 | 431 | 791 | 59.7 |
HR1 | 7.04 | 42.7 | 3.41 | 36.9 | 441 | 334 | 598 | 64.8 |
HR2 | 7.23 | 47.6 | 3.02 | 40.7 | 710 | 482 | 872 | 68.4 |
HR3 | 9.53 | 54.0 | 2.41 | 29.7 | 1100 | 937 | 1855 | 54.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørensen, J.N.; Larsen, G.C. A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms. Energies 2021, 14, 448. https://doi.org/10.3390/en14020448
Sørensen JN, Larsen GC. A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms. Energies. 2021; 14(2):448. https://doi.org/10.3390/en14020448
Chicago/Turabian StyleSørensen, Jens Nørkær, and Gunner Christian Larsen. 2021. "A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms" Energies 14, no. 2: 448. https://doi.org/10.3390/en14020448
APA StyleSørensen, J. N., & Larsen, G. C. (2021). A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms. Energies, 14(2), 448. https://doi.org/10.3390/en14020448