Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension
Abstract
:1. Introduction
2. Methods
2.1. Governing Equations
2.2. Constitutive Equations
3. Results and Discussion
3.1. Flow in Straight Sudden Expansion Channel
3.2. Flow between Two Rotating Cylinders (Circles)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
No (#i) | Grid Spacing (h) | Refinement Factor (r) | Factor of Safety (Fs) |
---|---|---|---|
#5 | 2 | 1.4 | 1.25 2 |
#4 | 1.43 | 1.43 | 1.25 |
#3 1 | 1 | 1.4 | 1.25 |
#2 | 0.71 | 1.42 | 1.25 |
#1 | 0.5 | \ | 1.25 |
Group | N11 | N2 | N3 | r21 | r32 | p | ϕ21ext | ea21 | eext21 | GCIfine21 |
---|---|---|---|---|---|---|---|---|---|---|
A | 25,480 | 13,000 2 | 6370 | 1.4 | 1.43 | 9.01 | 0.1549 | 1.53% | 0.07% | 0.09% |
B | 52,000 | 25,480 | 13,000 2 | 1.43 | 1.4 | 1.23 | 0.1506 | 1.02% | 1.92% | 2.35% |
Group | C11 | C2 | C3 | r21 | r32 | p | ϕ21ext | ea21 | eext21 | GCIfine21 |
---|---|---|---|---|---|---|---|---|---|---|
I | 0.9 2 | 1.8 | 3.6 | 2 | 2 | 0.50 | 0.1757 | 3.29% | 7.35% | 9.9 % |
I 3 | 0.9 2 | 1.8 | 3.6 | 2 | 2 | 1 3 | 0.1682 | 3.29% | 3.19% | 4.12 % |
II | 0.45 | 0.9 2 | 1.8 | 2 | 2 | 0.62 | 0.1728 | 2.10% | 3.80% | 4.93% |
II 3 | 0.45 | 0.9 2 | 1.8 | 2 | 2 | 1 3 | 0.1698 | 2.10% | 2.06% | 2.63% |
References
- Hsu, T.-J.; Traykovski, P.A.; Kineke, G.C. On modeling boundary layer and gravity-driven fluid mud transport. J. Geophys. Res. Space Phys. 2007, 112, 04011. [Google Scholar] [CrossRef] [Green Version]
- Ingber, M.S.; Graham, A.L.; Mondy, L.A.; Fang, Z. An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius. Int. J. Multiph. Flow 2009, 35, 270–276. [Google Scholar] [CrossRef]
- Wu, W.-T.; Aubry, N.; Massoudi, M. On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles. Int. J. Non-Linear Mech. 2014, 59, 76–82. [Google Scholar] [CrossRef]
- Wu, W.-T.; Massoudi, M. Heat Transfer and Dissipation Effects in the Flow of a Drilling Fluid. Fluids 2016, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wu, W.-T.; Massoudi, M. Fully developed flow of a drilling fluid between two rotating cylinders. Appl. Math. Comput. 2016, 281, 266–277. [Google Scholar] [CrossRef]
- Subia, S.R.; Ingber, M.S.; Mondy, L.A.; Altobelli, S.A.; Graham, A.L. Modelling of concentrated suspensions using a continuum constitutive equation. J. Fluid Mech. 1998, 373, 193–219. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Su, J.; Gu, Z.; Xu, X.Y. Discrete element simulation of particle flow in arbitrarily complex geometries. Chem. Eng. Sci. 2011, 66, 6069–6088. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; Series on Advances in Mathematics for Applied Sciences; World Scientific: Singapore, 1995; Volume 35. [Google Scholar]
- Johnson, G.; Massoudi, M.; Rajagopal, K. Flow of a fluid—Solid mixture between flat plates. Chem. Eng. Sci. 1991, 46, 1713–1723. [Google Scholar] [CrossRef]
- Mavromoustaki, A.; Bertozzi, A.L. Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows. J. Eng. Math. 2014, 88, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Armanini, A.; Dalrì, C.; Fraccarollo, L.; Larcher, M.; Zorzin, E. Experimental analysis of the general features of uniform mud-flow. In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 10–12 September 2003; Volume 1, pp. 423–434. [Google Scholar]
- Wang, L.; Mavromoustaki, A.; Bertozzi, A.L.; Urdaneta, G.; Huang, K. Rarefaction-singular shock dynamics for conserved volume gravity driven particle-laden thin film. Phys. Fluids 2015, 27, 033301. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.J.; Armstrong, R.C.; Brown, R.A.; Graham, A.L.; Abbott, J.R. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A Fluid Dyn. 1992, 4, 30–40. [Google Scholar] [CrossRef]
- Tetlow, N.; Graham, A.L.; Ingber, M.S.; Subia, S.R.; Mondy, L.A.; Altobelli, S.A. Particle migration in a Couette apparatus: Experiment and modeling. J. Rheol. 1998, 42, 307–327. [Google Scholar] [CrossRef]
- Jeffrey, D.J. Conduction through a random suspension of spheres. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1973, 335, 355–367. [Google Scholar] [CrossRef]
- Macosko, C. Rheology: Principles, Measurements and Applications; Wiley-VCH Inc.: New York, NY, USA, 1994; ISBN 1560815795. [Google Scholar]
- Krieger, I.M. Rheology of monodisperse latices. Adv. Colloid Interface Sci. 1972, 3, 111–136. [Google Scholar] [CrossRef]
- Roscoe, R. Suspensions, flow properties of disperse systems. In Flow Properties of Disperse Systems; North Holland Publishing Company: Amsterdam, The Netherlands, 1953. [Google Scholar]
- Schowalter, W.R.; Lumley, J.L. Mechanics of Non-Newtonian Fluids. Phys. Today 1980, 33, 57. [Google Scholar] [CrossRef] [Green Version]
- Macosko, C.W.; Larson, R.G. Rheology: Principles, Measurements, and Applications; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Carreau, P.J.; De Kee, D.C.R.; Chhabra, R.P. Rheology of Polymeric Systems: Principles and Applications; Hanser Pub Inc.: New York, NY, USA, 1997. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Lu, S.; Lin, H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J. Appl. Phys. 1996, 79, 6761–6769. [Google Scholar] [CrossRef]
- Batchelor, G.K.; O’Brien, R.W. Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 355, 313–333. [Google Scholar] [CrossRef]
- Seifu, B.; Nir, A.; Semiat, R. Viscous dissipation rate in concentrated suspensions. Phys. Fluids 1994, 6, 3189–3191. [Google Scholar] [CrossRef]
- Acrivos, A.; Mauri, R.; Fan, X. Shear-induced resuspension in a couette device. Int. J. Multiph. Flow 1993, 19, 797–802. [Google Scholar] [CrossRef]
- Abedi, M.; Jalali, M.A.; Maleki, M. Interfacial instabilities in sediment suspension flows. J. Fluid Mech. 2014, 758, 312–326. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Amoudry, L.O.; Hsu, T.; Liu, P.L. Schmidt number and near-bed boundary condition effects on a two-phase dilute sediment transport model. J. Geophys. Res. Space Phys. 2005, 110, 110. [Google Scholar] [CrossRef]
- Issa, R. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Cañada Flintridge, CA, USA, 1998; Volume 2. [Google Scholar]
- Paredi, D.; Lucchini, T.; D’Errico, G.; Onorati, A.; Pickett, L.; Lacey, J. Validation of a comprehensive computational fluid dynamics methodology to predict the direct injection process of gasoline sprays using Spray G experimental data. Int. J. Engine Res. 2020, 21, 199–216. [Google Scholar] [CrossRef]
- Casimir, N.; Xiangyuan, Z.; Ludwig, G.; Skoda, R. Assessment of statistical eddy-viscosity turbulence models for unsteady flow at part and overload operation of centrifugal pumps. In Proceedings of the 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Lausanne, Switzerland, 8–12 April 2019. [Google Scholar]
- Sadiki, A.; Maltsev, A.; Wegner, B.; Flemming, F.; Kempf, A.; Janicka, J. Unsteady methods (URANS and LES) for simulation of combustion systems. Int. J. Therm. Sci. 2006, 45, 760–773. [Google Scholar] [CrossRef]
- Hasse, C. Scale-resolving simulations in engine combustion process design based on a systematic approach for model development. Int. J. Engine Res. 2015, 17, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Musa, O.; Chen, X.; Li, Y.; Li, W.; Liao, W. Unsteady Simulation of Ignition of Turbulent Reactive Swirling Flow of Novel Design of Solid-Fuel Ramjet Motor. Energies 2019, 12, 2513. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, X.; Cai, W.; Musa, O. Numerical Investigation of the Effect of Sudden Expansion Ratio of Solid Fuel Ramjet Combustor with Swirling Turbulent Reacting Flow. Energies 2019, 12, 1784. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cao, Y. Numerical simulation of airfoil aerodynamic performance under the coupling effects of heavy rain and ice accretion. Adv. Mech. Eng. 2016, 8, 168781401666716. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Lathrop, D.P.; Fineberg, J.; Swinney, H.L. Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 1992, 68, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Brandstater, A.; Swinney, H.L. Strange attractors in weakly turbulent Couette-Taylor flow. Phys. Rev. A 1987, 35, 2207–2220. [Google Scholar] [CrossRef]
- Babkin, V.A. Fully Developed Turbulent Taylor–Couette Flow. J. Eng. Phys. Thermophys. 2014, 87, 1505–1512. [Google Scholar] [CrossRef]
- Freitas, C.J. Verification and Validation in Computational Fluid Dynamics and Heat Transfer: PTC 61. In Proceedings of the ASME 2006 Power Conference, Atlanta, GA, USA, 2–4 May 2006; pp. 793–800. [Google Scholar]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa Albuquerque: Hermosa Beach, CA, USA, 1998; Volume 895. [Google Scholar]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-319-99691-2. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, W.-T. Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension. Energies 2021, 14, 487. https://doi.org/10.3390/en14020487
Wu Y, Wu W-T. Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension. Energies. 2021; 14(2):487. https://doi.org/10.3390/en14020487
Chicago/Turabian StyleWu, Yan, and Wei-Tao Wu. 2021. "Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension" Energies 14, no. 2: 487. https://doi.org/10.3390/en14020487
APA StyleWu, Y., & Wu, W. -T. (2021). Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension. Energies, 14(2), 487. https://doi.org/10.3390/en14020487