Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera
Abstract
:1. Introduction
- The sun’s radiation hits the roof surface.
- Solar Reflectance: the fraction of solar emergance that is reflected by the roof (some heat is absorbed by the roof and transferred to the building below).
- Thermal Emittance: the relative ability of the roof surface to radiate absorbed heat.
2. Materials and Methods
2.1. Study Method and Equipment
2.2. Study Area
2.3. Data Acquisition
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krawczyk, J.M.; Mazur, A.M.; Sasin, T.; Stokłosa, A.W. Infrared Building Inspection with Unmanned Aerial Vehicles. Pr. Inst. Lotnictwa 2015, 3, 32–48. [Google Scholar] [CrossRef]
- Bui, D.; Nguyen, T.N.; Ngo, T.D.; Nguyen-Xuan, H. An Artificial Neural Network (ANN) Expert System Enhanced with the Electromagnetism-Based Firefly Algorithm (EFA) for Predicting the Energy Consumption in Buildings. Energy 2020, 190, 116370. [Google Scholar] [CrossRef]
- Somu, N.; MR, G.R.; Ramamritham, K. A Deep Learning Framework for Building Energy Consumption Forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Global Status Report for Buildings and Construction. 2019. Available online: https://www.gbpn.org/china/newsroom/2019-global-status-report-buildings-and-construction (accessed on 15 August 2020).
- Wang, D.; Meng, J.; Zhang, T. Evaluating the Thermal Performance Index for Future Architectures in China’s Hot Summer and Cool Winter Regions. Sustain. Energy Technol. Assess. 2021, 46, 101241. [Google Scholar]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Shafiee, E.; Faizi, M.; Yazdanfar, S.; Khanmohammadi, M. Assessment of the Effect of Living Wall Systems on the Improvement of the Urban Heat Island Phenomenon. Build. Environ. 2020, 181, 106923. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, R.; Han, S.; Du, C.; Yu, W.; Chen, S.; Li, B.; Yu, H.; Li, N.; Peng, J. How do urban residents use energy for winter heating at home? A large-scale survey in the hot summer and cold winter climate zone in the Yangtze River region. Energy Build. 2020, 223, 110131. [Google Scholar] [CrossRef]
- Sisco, L.; Monzer, S.; Farajalla, N.; Bashour, I.; Saoud, I.P. Roof top gardens as a means to use recycled waste and A/C condensate and reduce temperature variation in buildings. Build. Environ. 2017, 117, 127–134. [Google Scholar] [CrossRef]
- Sholahudin, S.; Han, H. Simplified dynamic neural network model to predict heating load of a building using Taguchi method. Energy 2016, 115, 1672–1678. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Dinda, A.; Mithun, S.; Khatun, R.; Akbari, H.; Kusaka, H.; Mitra, C.; Bhatti, S.S.; Van Doan, Q.V.; et al. Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands. Sci. Total Environ. 2019, 663, 610–631. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Ozaki, A.; Dong, N. Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. J. Clean. Prod. 2020, 267, 122205. [Google Scholar] [CrossRef]
- Shittu, E.; Stojceska, V.; Gratton, P.; Kolokotroni, M. Environmental impact of cool roof paint: Case-study of house retrofit in two hot islands. Energy Build. 2020, 217, 110007. [Google Scholar] [CrossRef]
- Lee, K.R.; Seong, J.H.; Han, Y.K.; Lee, W.H. Comparison of rooftop surface temperature and indoor temperature for the evaluation of cool roof performance according to the rooftop colors in summer: Using thermal infrared camera mounted on UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2019, 37, 9–18. [Google Scholar]
- Lee, K.; Seong, J.; Han, Y.; Lee, W.H. Evaluation of applicability of various color space techniques of UAV images for evaluating cool roof performance. Energies 2020, 13, 4213. [Google Scholar] [CrossRef]
- Varentsov, M.; Konstantinov, P.; Baklanov, A.; Esau, I.; Miles, V.; Davy, R. Anthropogenic and Natural Drivers of a Strong Winter Urban Heat Island in a Typical Arctic City. Atmos. Chem. Phys. 2018, 18, 17573–17587. [Google Scholar] [CrossRef] [Green Version]
- Vihola, J.; Sorri, J.; Heljo, J.; Kero, P. Heat Loss Rate of the Finnish Building Stock. Procedia Econ. Financ. 2015, 21, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, A.; Vatin, N.; Nemova, D.; Shabaldin, A.; Melnikova, L.; Kirill, P. Using life-cycle analysis to assess energy savings delivered by building insulation. Procedia Eng. 2015, 117, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Al-Homoud, M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Modi, P.; Bushehri, R.; Georgantopoulou, C.; Mavromatidis, L. Design and development of a mini scale hot box for thermal efficiency evaluation of an insulation building block prototype used in Bahrain. Adv. Build. Energy Res. 2017, 11, 130–151. [Google Scholar] [CrossRef]
- Beemkumar, N.; Yuvarajan, D.; Arulprakasajothi, M.; Elangovan, K.; Arunkumar, T. Control of room temperature fluctuations in the building by incorporating PCM in the roof. J. Therm. Anal. Calorim. 2021, 143, 3039–3046. [Google Scholar] [CrossRef]
- Asadi, S.; Hassan, M.M.; Beheshti, A. Performance evaluation of an attic radiant barrier system using three-dimensional transient finite element method. J. Build. Phys. 2013, 36, 247–264. [Google Scholar] [CrossRef]
- Ryu, T.H.; Um, J. Comparative evaluation of surface temperature among rooftop colors of flat roof building models: Towards performance evaluation of cool roof. KIEAE J. 2013, 13, 83–91. [Google Scholar]
- Rosati, A.; Fedel, M.; Rossi, S. NIR reflective pigments for cool roof applications: A comprehensive review. J. Clean. Prod. 2021, 313, 127826. [Google Scholar] [CrossRef]
- Hoegner, L.; Stilla, U. Mobile thermal mapping for matching of infrared images with 3D building models and 3D point clouds. Quant. Infrared Thermogr. J. 2018, 15, 1–19. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Zefri, Y.; ElKettani, A.; Sebari, I.; Lamallam, S.A. Thermal infrared and visual inspection of photovoltaic installations by UAV photogrammetry—Application case: Morocco. Drones 2018, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Mejía, E.; Loaiza-Correa, H.; Franco-Mejía, E.; Restrepo-Girón, A.D.; Nope-Rodríguez, S.E. Dataset for recognition of snail trails and hot spot failures in monocrystalline Si solar panels. Data Brief 2019, 26, 104441. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, K.R.; Lee, W.H.; Han, Y.K. Generation of land surface temperature orthophoto and temperature accuracy analysis by land covers based on thermal infrared sensor mounted on unmanned aerial vehicle. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2018, 36, 263–270. [Google Scholar]
- Misopolinos, L.; Zalidis, C.H.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T.K.; Zalidis, G. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 19 June 2015; Volume 9535, p. 95351H. [Google Scholar]
- Di Felice, F.; Mazzini, A.; Di Stefano, G.; Romeo, G. Drone high resolution infrared imaging of the Lusi mud eruption. Mar. Pet. Geol. 2018, 90, 38–51. [Google Scholar] [CrossRef]
- Aubrecht, D.M.; Helliker, B.R.; Goulden, M.L.; Roberts, D.A.; Still, C.J.; Richardson, A.D. Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agric. For. Meteorol. 2016, 228, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Usamentiaga, R.; de Arquer, P.; Fernández, M.Á.; Fernández, D.; Carús, J.L.; Fernández, M. Robust detection, classification and localization of defects in large photovoltaic plants based on unmanned aerial vehicles and infrared thermography. Appl. Sci. 2020, 10, 5948. [Google Scholar] [CrossRef]
- Kao, D.; Chen, M.; Wu, W.; Lin, J.; Chen, C.; Tsai, F. Drone forensic investigation: DJI spark drone as a case study. Procedia Comput. Sci. 2019, 159, 1890–1899. [Google Scholar] [CrossRef]
- Karbou, F.; Prigent, C. Calculation of microwave land surface emissivity from satellite observations: Validity of the specular approximation over snow-free surfaces? IEEE Geosci. Remote Sens. Lett. 2005, 2, 311–314. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.B.; Matthews, E. Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res. Atmos. 1997, 102, 21867–21890. [Google Scholar] [CrossRef]
- Jung, J.; Park, S.; Lee, Y.; Gim, J. The Development of Infrared Thermal Imaging Safety Diagnosis System using Pearson’s Correlation Coefficient. J. Korean Sol. Energy Soc. 2019, 39, 55–65. [Google Scholar] [CrossRef]
- St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intellig. Lab. Syst. 1989, 6, 259–272. [Google Scholar]
- Radhi, H. Evaluating the potential impact of global warming on the UAE residential buildings–A contribution to reduce the CO2 emissions. Build. Environ. 2009, 44, 2451–2462. [Google Scholar] [CrossRef]
UAV | TIR Camera | Laser Thermometer | Digital Thermometer | ||||
---|---|---|---|---|---|---|---|
Inspire 1 | Zenmuse XT630 | DT-8868H | Xiaomi | ||||
Weight | 2935 g | Resolution | 640 × 512 | Temperature range | −50 °C~1650 °C (−58 °F–3002 °F) | Temperature display unit | 0.1 °C |
Flight altitude | Max: 4500 m | Pixel size | 17 μm | Temperature accuracy | ±1.0% of reading | Temperature accuracy | ±0.3 °C |
Flight time | Max: 18 min | FOV | 45° × 37° | ||||
Speed | Max: 22 m/s | Focal length | 13 mm | ||||
Maximum wind resistance | 10 m/s | Scene range | −25 °C~+135 °C (High gain) −40 °C~+550 °C (Low gain) |
Parameter | Value | |
---|---|---|
TIR Sensor | PlanckR1 | 17,096.453 |
PlanckR2 | 0.046642166 | |
PlanckB | 1428 | |
PlanckF | 1 | |
PlanckO | −342 | |
Alpha 1 | 0.006569 | |
Alpha 2 | 0.012620 | |
Beta 1 | −0.002276 | |
Beta 2 | −0.006670 | |
X | 1.9 | |
Environment | Dist | 50 m |
RAT | 22 °C | |
Hum | 50% | |
AirT | 22 °C | |
E | 0.95 |
White | Green | Gray | Blue | Black | |
---|---|---|---|---|---|
TIR camera | 19.46 | 26.58 | 24.35 | 35.05 | 44.37 |
Laser thermometer | 19.35 | 26.81 | 24.18 | 34.95 | 44.56 |
Temperature difference | 0.11 | −0.23 | 0.17 | 0.10 | −0.19 |
Time | Color | 3rd Week of Nov. | 4th Week of Nov. | 5th Week of Nov. | 1st Week of Dec. | 2nd Week of Dec. | 3rd Week of Dec. | 4th Week of Dec. | 1st Week of Jan. | 2nd Week of Jan. | 3rd Week of Jan. | 4th Week of Jan. | 1st Week of Feb. | 2nd Week of Feb. | 3rd Week of Feb. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 h | White | 17.10 | 17.40 | 16.35 | 15.05 | 15.15 | 15.35 | 15.25 | 13.35 | 14.15 | 11.95 | 10.65 | 7.00 | 6.15 | 3.40 |
Green | 28.20 | 29.15 | 29.85 | 28.85 | 27.55 | 29.65 | 27.85 | 26.45 | 28.15 | 25.85 | 24.95 | 20.75 | 19.85 | 18.15 | |
Gray | 19.50 | 19.75 | 18.15 | 19.75 | 19.40 | 20.15 | 19.50 | 18.00 | 18.65 | 16.85 | 15.50 | 11.60 | 10.75 | 8.35 | |
Blue | 31.90 | 32.10 | 29.55 | 30.75 | 29.95 | 31.15 | 29.70 | 28.55 | 29.85 | 27.70 | 26.75 | 23.25 | 21.95 | 19.55 | |
Black | 41.45 | 41.30 | 39.80 | 38.25 | 38.10 | 38.65 | 38.20 | 36.30 | 37.45 | 35.25 | 33.95 | 30.10 | 29.10 | 26.20 | |
12 h | White | 19.80 | 19.85 | 18.35 | 17.50 | 17.15 | 17.90 | 20.15 | 15.75 | 16.60 | 14.40 | 13.10 | 9.30 | 8.05 | 5.60 |
Green | 32.65 | 32.55 | 30.40 | 30.95 | 29.75 | 30.15 | 29.45 | 28.55 | 30.95 | 28.85 | 26.80 | 22.45 | 20.25 | 19.85 | |
Gray | 23.95 | 23.95 | 23.30 | 22.55 | 22.45 | 22.85 | 25.45 | 20.65 | 21.55 | 19.75 | 18.40 | 15.00 | 13.80 | 11.30 | |
Blue | 35.10 | 35.10 | 32.60 | 33.15 | 32.70 | 33.45 | 32.80 | 31.30 | 32.25 | 30.05 | 28.70 | 24.75 | 23.40 | 21.30 | |
Black | 44.20 | 44.55 | 42.55 | 44.10 | 43.30 | 44.40 | 43.40 | 41.50 | 42.90 | 40.70 | 39.55 | 35.60 | 33.85 | 32.00 | |
14 h | White | 22.00 | 21.90 | 20.65 | 19.70 | 19.30 | 20.00 | 19.40 | 17.90 | 18.50 | 16.70 | 15.40 | 11.10 | 9.20 | 7.85 |
Green | 34.55 | 33.95 | 32.15 | 33.45 | 34.65 | 34.75 | 35.95 | 32.15 | 33.85 | 31.25 | 30.15 | 27.05 | 25.85 | 23.90 | |
Gray | 26.85 | 26.95 | 25.95 | 26.15 | 25.90 | 26.45 | 26.00 | 24.10 | 25.15 | 22.95 | 21.85 | 17.95 | 17.10 | 14.40 | |
Blue | 37.15 | 36.00 | 34.70 | 36.00 | 36.25 | 36.75 | 38.90 | 34.85 | 35.45 | 33.85 | 32.50 | 28.75 | 27.75 | 25.30 | |
Black | 50.05 | 47.05 | 46.20 | 47.15 | 46.65 | 47.55 | 49.65 | 46.25 | 46.35 | 44.55 | 43.20 | 39.40 | 37.50 | 35.15 | |
16 h | White | 23.30 | 22.15 | 22.45 | 20.45 | 20.10 | 20.85 | 23.10 | 18.70 | 19.65 | 17.45 | 16.15 | 12.30 | 10.80 | 8.60 |
Green | 36.55 | 37.95 | 36.45 | 38.15 | 35.15 | 36.80 | 38.45 | 34.25 | 36.10 | 35.70 | 32.65 | 28.75 | 29.40 | 17.80 | |
Gray | 28.30 | 28.25 | 28.05 | 28.20 | 26.05 | 27.45 | 29.05 | 24.40 | 24.85 | 25.95 | 22.25 | 20.10 | 19.00 | 15.25 | |
Blue | 37.50 | 38.15 | 38.75 | 39.00 | 37.80 | 38.95 | 40.80 | 36.40 | 38.10 | 36.50 | 34.60 | 31.25 | 30.45 | 27.10 | |
Black | 49.55 | 49.05 | 48.25 | 47.85 | 47.65 | 48.05 | 49.85 | 48.55 | 48.25 | 46.05 | 46.85 | 41.45 | 40.85 | 38.45 |
Time | Color | 3rd Week of Nov. | 4th Week of Nov. | 5th Week of Nov. | 1st Week of Dec. | 2nd Week of Dec. | 3rd Week of Dec. | 4th Week of Dec. | 1st Week of Jan. | 2nd Week of Jan. | 3rd Week of Jan. | 4th Week of Jan. | 1st Week of Feb. | 2nd Week of Feb. | 3rd Week of Feb. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 h | White | 16.15 | 14.40 | 9.70 | 8.40 | 7.10 | 7.70 | 7.40 | 6.30 | 4.80 | 5.20 | 4.90 | 2.80 | 2.45 | 2.05 |
Green | 17.40 | 18.25 | 13.55 | 10.60 | 8.50 | 9.60 | 8.20 | 8.40 | 6.35 | 7.30 | 6.00 | 4.35 | 1.95 | 1.75 | |
Gray | 17.15 | 16.45 | 11.90 | 9.60 | 8.40 | 8.50 | 8.05 | 7.40 | 6.25 | 6.40 | 5.85 | 4.35 | 2.15 | 1.95 | |
Blue | 18.00 | 18.00 | 13.55 | 11.30 | 10.25 | 10.45 | 10.00 | 9.10 | 8.20 | 8.05 | 7.50 | 6.00 | 2.85 | 2.65 | |
Black | 19.40 | 19.15 | 15.30 | 12.80 | 11.25 | 11.65 | 11.15 | 10.60 | 9.40 | 9.75 | 8.95 | 7.70 | 4.85 | 3.90 | |
12 h | White | 15.80 | 14.10 | 9.45 | 8.45 | 7.25 | 7.30 | 7.35 | 6.25 | 5.10 | 5.10 | 4.85 | 3.15 | 2.35 | 2.20 |
Green | 17.35 | 18.25 | 13.55 | 10.80 | 8.75 | 9.70 | 8.25 | 8.60 | 6.60 | 7.50 | 6.15 | 5.15 | 2.35 | 2.10 | |
Gray | 17.45 | 16.80 | 12.00 | 9.90 | 8.50 | 9.15 | 7.85 | 7.70 | 6.15 | 6.65 | 5.75 | 4.10 | 2.25 | 2.10 | |
Blue | 17.95 | 18.15 | 12.90 | 11.10 | 10.50 | 10.10 | 9.80 | 8.80 | 8.10 | 7.70 | 7.60 | 5.45 | 2.85 | 2.65 | |
Black | 19.80 | 19.90 | 17.25 | 13.30 | 12.35 | 12.30 | 11.75 | 11.00 | 9.95 | 9.90 | 9.55 | 8.05 | 4.25 | 4.05 | |
14 h | White | 15.90 | 13.60 | 8.90 | 8.20 | 6.75 | 5.70 | 6.60 | 5.90 | 4.35 | 3.30 | 4.40 | 2.25 | 2.70 | 2.35 |
Green | 18.05 | 18.45 | 13.85 | 11.30 | 9.25 | 9.15 | 10.15 | 8.90 | 7.25 | 8.55 | 6.80 | 5.50 | 2.90 | 2.70 | |
Gray | 17.35 | 16.60 | 12.00 | 9.80 | 7.85 | 7.30 | 8.10 | 7.40 | 5.85 | 4.80 | 5.70 | 3.70 | 4.20 | 2.20 | |
Blue | 18.15 | 18.55 | 13.50 | 11.65 | 11.05 | 10.25 | 10.10 | 9.25 | 8.35 | 8.15 | 8.10 | 6.20 | 4.80 | 2.85 | |
Black | 20.75 | 20.55 | 18.55 | 15.25 | 14.25 | 14.55 | 14.10 | 10.65 | 9.55 | 7.80 | 8.50 | 6.95 | 6.15 | 5.85 | |
16 h | White | 15.70 | 13.75 | 9.10 | 7.75 | 6.30 | 5.20 | 6.45 | 5.35 | 4.10 | 3.15 | 4.05 | 2.15 | 1.75 | 1.95 |
Green | 18.45 | 18.60 | 14.45 | 11.65 | 9.65 | 9.45 | 10.25 | 9.25 | 7.40 | 8.80 | 7.20 | 5.60 | 4.15 | 2.85 | |
Gray | 18.85 | 17.10 | 12.45 | 10.15 | 8.35 | 7.55 | 7.90 | 7.40 | 6.15 | 4.95 | 5.95 | 3.80 | 4.45 | 2.95 | |
Blue | 18.30 | 18.25 | 13.60 | 11.80 | 11.50 | 10.15 | 10.55 | 9.40 | 8.65 | 8.35 | 8.40 | 6.55 | 5.00 | 3.20 | |
Black | 20.95 | 20.85 | 18.95 | 16.45 | 14.65 | 14.80 | 14.30 | 11.35 | 10.65 | 10.65 | 8.90 | 7.60 | 7.15 | 6.35 |
Time | White | Green | Gray | Blue | Black |
---|---|---|---|---|---|
10 | 0.82 | 0.78 | 0.73 | 0.82 | 0.90 |
12 | 0.80 | 0.83 | 0.78 | 0.87 | 0.82 |
14 | 0.76 | 0.70 | 0.73 | 0.73 | 0.78 |
16 | 0.75 | 0.69 | 0.69 | 0.70 | 0.76 |
Groups | Count | Sum | Average | Variance | ||
---|---|---|---|---|---|---|
White | 56 | 887.45 | 15.85 | 24.31 | ||
Green | 1676.65 | 29.94 | 27.43 | |||
Gray | 1195.75 | 21.35 | 25.40 | |||
Blue | 1798.90 | 32.12 | 25.02 | |||
Black | 2354.10 | 42.03 | 33.34 | |||
Source of Variation | Sum of squares | Degrees of freedom | Mean of squares | F-value | p-value | F-critical value |
Between groups | 22,923.75 | 4 | 5730.94 | 211.46 | 1.31 × 10−82 | 2.40 |
Within groups | 7452.97 | 275 | 27.10 | - | - | - |
Total | 30,376.72 | 279 | - | - | - | - |
Groups | Count | Sum | Average | Variance | ||
---|---|---|---|---|---|---|
White | 56 | 375.70 | 6.71 | 16.19 | ||
Green | 517.85 | 9.25 | 22.21 | |||
Gray | 461.60 | 8.24 | 20.23 | |||
Blue | 554.20 | 9.90 | 19.34 | |||
Black | 676.30 | 12.08 | 23.16 | |||
Source of Variation | Sum of squares | Degrees of freedom | Mean of squares | F-value | p-value | F-critical value |
Between groups | 889.21 | 4 | 222.30 | 10.99 | 2.77 × 10−8 | 2.40 |
Within groups | 5561.67 | 275 | 20.22 | - | - | - |
Total | 6450.88 | 279 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Park, J.; Jung, S.; Lee, W. Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera. Energies 2021, 14, 6488. https://doi.org/10.3390/en14206488
Lee K, Park J, Jung S, Lee W. Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera. Energies. 2021; 14(20):6488. https://doi.org/10.3390/en14206488
Chicago/Turabian StyleLee, Kirim, Jinhwan Park, Sejung Jung, and Wonhee Lee. 2021. "Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera" Energies 14, no. 20: 6488. https://doi.org/10.3390/en14206488
APA StyleLee, K., Park, J., Jung, S., & Lee, W. (2021). Roof Color-Based Warm Roof Evaluation in Cold Regions Using a UAV Mounted Thermal Infrared Imaging Camera. Energies, 14(20), 6488. https://doi.org/10.3390/en14206488