Experimental and Numerical Study of Multiple Jets Impinging a Step Surface
Abstract
:1. Introduction
2. Experimental Method
2.1. Experimental Apparatus
2.2. PIV Measurements
2.3. Heat Transfer Measurements
2.4. Experimental Method
2.5. Data Reduction and Uncertainty Estimation
2.5.1. PIV Measurements
2.5.2. Heat Transfer Measurements
3. Numerical Method
3.1. Governing Equations
3.2. Physical Domain and Boundary Conditions
3.3. Turbulence Modelling
3.4. Discretization
3.5. Grid Independency
3.6. Numerical Algorithm
4. Results and Discussion
4.1. Multiple Jet Impingement Flow Dynamics
4.2. Velocity Profile over the Target Plate
4.3. Velocity Profile over the Central Jet Axis
4.4. Average Heat Transfer over a Flat and Non-Flat Plate
5. Numerical Model Validation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Quantity | SI Unit |
Af | Non-dimensional area | - |
D | Diameter | (m) |
Dω | Cross-diffusion term | - |
Dk | Generation of k | (kg/m·s3) |
Gω | Generation of ω | (kg/m3·s2) |
h | Heat transfer coefficient | (W/m2K) |
H | Nozzle-to-plate distance | (m) |
k | Turbulent kinetic energy; Thermal conductivity | (m2/s2); (W/mK) |
kp | Expansion factor | - |
N | Samples number | - |
Average Nusselt number | - | |
p | Pressure | (Pa) |
Average heat flux | (W/m2) | |
Re | Reynolds number | - |
S | Jet-to-jet spacing | (m) |
Sk, Sω | Source term | (W/m3) |
t | Time | (s) |
T | Temperature | (°C) |
u | Uncertainty/velocity | (dependent variable)/(m/s) |
Average velocity | (m/s) | |
Dimensionless distance of the first node to the wall | - | |
x, y, z | Cartesian coordinates | - |
u, v, w | Velocity according to the Cartesian coordinates | (m/s) |
Greek Symbol | ||
Effective diffusivity of k, ω | (kg/m·s) | |
ΔS | Magnification factor | |
Δx | Thickness | (m) |
Δxp | Particle’s displacement | (m) |
ε | Random error | (dependent variable) |
κ | Thermal diffusivity | (m2/s) |
μ | Dynamic viscosity | (Pa/s) |
ρ | Density | (kg/m3) |
σ | Standard deviation | - |
ω | Specific dissipation rate | (1/s) |
Subscript | ||
∞ | Ambient air | |
cf | Crossflow | |
j | Jet | |
max | Maximum | |
w | Wall |
References
- Intelligence, M. Printed Circuit Board Market-Growth, Trends, Forecasts (2020–2025); Mordor Intelligence: Hyderabad, India, 2020. [Google Scholar]
- Lau, C.-S.; Abdullah, M.; Ani, F.C. Three-dimensional thermal investigations at board level in a reflow oven using thermal-coupling method. Solder. Surf. Mt. Technol. 2012, 24, 167–182. [Google Scholar] [CrossRef]
- Whalley, D.C. A simplified model of the reflow soldering process. J. Mater. Process. Technol. 2004, 150, 134–144. [Google Scholar] [CrossRef]
- Balázs, I.; Harsányi, G. Heating characteristics of convection reflow ovens. Appl. Therm. Eng. 2009, 29, 2166–2171. [Google Scholar]
- Tsai, T.-N. Thermal parameters optimization of a reflow soldering profile in printed circuit board assembly: A comparative study. Appl. Soft Comput. 2012, 12, 2601–2613. [Google Scholar] [CrossRef]
- Caliskan, S.; Baskaya, S. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs. Int. J. Therm. Sci. 2012, 59, 234–246. [Google Scholar] [CrossRef]
- Chauhan, R.; Thakur, N. Heat transfer and friction factor correlations for impinging jet solar air heater. Exp. Therm. Fluid Sci. 2013, 44, 760–767. [Google Scholar] [CrossRef]
- Nayak, R.; Singh, S. Effect of geometrical aspects on the performance of jet plate solar air heater. Sol. Energy 2016, 137, 434–440. [Google Scholar] [CrossRef]
- Buzzard, W.C.; Ren, Z.; Ligrani, P.M.; Nakamata, C.; Ueguchi, S. Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. Int. J. Heat Mass Transf. 2017, 110, 805–816. [Google Scholar] [CrossRef]
- Alenezi, A.H.; Almutairi, A.; Alhajeri, H.M.; Addali, A.; Gamil, A.A.A. Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate. Energies 2018, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Tepe, A.Ü.; Uysal, Ü.; Yetişken, Y.; Arslan, K. Jet impingement cooling on a rib-roughened surface using extended jet holes. Appl. Therm. Eng. 2020, 178, 115601. [Google Scholar] [CrossRef]
- Lo, Y.-H.; Liu, Y.-H. Heat transfer of impinging jet arrays onto half-smooth, half-rough target surfaces. Appl. Therm. Eng. 2018, 128, 79–91. [Google Scholar] [CrossRef]
- Nadda, R.; Kumar, R.; Kumar, A.; Maithani, R. Optimization of single arc protrusion ribs parameters in solar air heater with impinging air jets based upon PSI approach. Therm. Sci. Eng. Prog. 2018, 7, 146–154. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, X.; Lu, X.; Li, X.; Ren, J. Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics. Energies 2021, 14, 4757. [Google Scholar] [CrossRef]
- Nagesha, K.; Srinivasan, K.; Sundararajan, T. Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs. Exp. Therm. Fluid Sci. 2020, 112, 109995. [Google Scholar] [CrossRef]
- De Oliveira, M.A.; De Moraes, P.G.; De Andrade, C.L.; Bimbato, A.M.; Pereira, L.A.A. Control and Suppression of Vortex Shedding from a Slightly Rough Circular Cylinder by a Discrete Vortex Method. Energies 2020, 13, 4481. [Google Scholar] [CrossRef]
- Slama, M.; Bex, C.C.; Pinon, G.; Togneri, M.; Evans, I. Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the Nepthyd Layout in the Alderney Race. Energies 2021, 14, 3826. [Google Scholar] [CrossRef]
- Spring, S.; Xing, Y.; Weigand, B. An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets with Surface Ribs. J. Heat Transf. 2012, 134, 082201. [Google Scholar] [CrossRef]
- Casanova, J.O.; Granados-Ortiz, F. Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet. Int. J. Heat Mass Transf. 2014, 76, 128–143. [Google Scholar] [CrossRef]
- Brakmann, R.; Chen, L.; Weigand, B.; Crawford, M. Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins1. J. Turbomach. 2016, 138, 111010. [Google Scholar] [CrossRef]
- Shukla, A.K.; Dewan, A. Convective Heat Transfer Enhancement using Slot Jet Impingement on a Convective Heat Transfer Enhancement using Slot Jet Impingement on a Detached Rib Surface. J. Appl. Fluid Mech. 2017, 10, 1615–1627. [Google Scholar]
- Jing, Q.; Zhang, D.; Xie, Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int. J. Heat Mass Transf. 2018, 126, 169–190. [Google Scholar] [CrossRef]
- McInturff, P.; Suzuki, M.; Ligrani, P.; Nakamata, C.; Lee, D.H. Effects of hole shape on impingement jet array heat transfer with small-scale, target surface triangle roughness. Int. J. Heat Mass Transf. 2018, 127, 585–597. [Google Scholar] [CrossRef]
- Chen, L.; Brakmann, R.G.; Weigand, B.; Poser, R.; Yang, Q. Detailed investigation of staggered jet impingement array cooling performance with cubic micro pin fin roughened target plate. Appl. Therm. Eng. 2020, 171, 115095. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Melling, A. Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1406–1416. [Google Scholar] [CrossRef]
- Keane, R.D.; Adrian, R.J. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 1992, 49, 191–215. [Google Scholar] [CrossRef]
- Westerweel, J. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Vasilevskis, S.; Kozlowski, B. Particle Image Velocimetry-User Guide; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2018. [Google Scholar]
- Cao, X.; Liu, J.; Jiang, N.; Chen, Q. Particle image velocimetry measurement of indoor airflow field: A review of the technologies and applications. Energy Build. 2014, 69, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Heat flux measurement techniques. Proc. Inst. Mech. Eng. Part C 1999, 213, 655–677. [Google Scholar] [CrossRef]
- Assaad, M.C.; Kimble, B.; Huang, Y.-M.; Burgan, R.; Fralick, G.C.; Wrbanek, J.D.; Gonzalez, J.M. Thin-Film Heat Flux Sensor for Measuring the Film Coefficient of Rubber Components of a Rolling Tire. Tire Sci. Technol. 2008, 36, 275–289. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Sabharwall, P.; Conder, T.; Skifton, R.; Stoots, C.; Kim, E.S. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility; Idaho National Laboratory: Idaho Falls, ID, USA, 2013. [Google Scholar]
- Sciacchitano, A. Uncertainty quantification in particle image velocimetry. Meas. Sci. Technol. 2019, 30, 092001. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, F.; Costa, C.; Teixeira, S.; Teixeira, J.C. Measurement Errors and Uncertainty Quantification of a 2D-PIV Experimental Setup for Jet Flow Characterization. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 1–59. [Google Scholar]
- Dantec Dynamics. Dynamic Studio, User’s Guide; Dantec Dynamics: Skovlunde, Denmark, 2016. [Google Scholar]
- ASME. Test. Uncertainty. Instruments and Appartus; The American Society of Mechanical Engineers: New York, NY, USA, 1998. [Google Scholar]
- Sciacchitano, A.; Wieneke, B. PIV uncertainty propagation. Meas. Sci. Technol. 2016, 27, 84006. [Google Scholar] [CrossRef] [Green Version]
- JCGM. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Joint Committee for Guides in Metrology: Sèvres, France, 2008. [Google Scholar]
- ANSYS. Ansys Fluent Theory Guide; ANSYS: Canonsburg, PA, USA, 2013. [Google Scholar]
- Zhu, K.; Yu, P.; Yuan, N.; Ding, J. Transient heat transfer characteristics of array-jet impingement on high-temperature flat plate at low jet-to-plate distances. Int. J. Heat Mass Transf. 2018, 127, 413–425. [Google Scholar] [CrossRef]
- Barbosa, F.V.; Silva, J.P.V.; Teixeira, S.F.C.; Soares, D.F.; Santos, D.N.F.; Delgado, I.A.C.; Teixeira, J.C.F. Cfd Prediction of Multiple Jet Impingement in a Reflow Soldering Process. In Transactions on Engineering Technologies. WCE 2018; Ao, S.I., Gelman, L., Kim, H.K., Eds.; Springer: Singapore, 2019. [Google Scholar]
- Debnath, S.; Khan, H.U.; Ahmed, Z.U. Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer. Therm. Sci. Eng. Prog. 2020, 19, 100580. [Google Scholar] [CrossRef]
- Tepe, A.Ü.; Yetişken, Y.; Uysal, Ü.; Arslan, K. Experimental and numerical investigation of jet impingement cooling using extended jet holes. Int. J. Heat Mass Transf. 2020, 158, 119945. [Google Scholar] [CrossRef]
- Shah, S. Numerical analysis of heat transfer between multiple jets and flat moving surface. Int. J. Heat Mass Transf. 2021, 171, 121088. [Google Scholar] [CrossRef]
- Menter, F.R.; Ferreira, J.C.; Esch, T. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 2–7 November 2003; pp. 1–7. [Google Scholar]
- Wen, Z.-X.; He, Y.-L.; Cao, X.-W.; Yan, C. Numerical study of impinging jets heat transfer with different nozzle geometries and arrangements for a ground fast cooling simulation device. Int. J. Heat Mass Transf. 2016, 95, 321–335. [Google Scholar] [CrossRef]
- Rhie, C.M.; Chow, W.L. Numerical Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation. AIAA J. 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer: New York, NY, USA, 1996. [Google Scholar]
- Lee, J.; Lee, S. Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement. Exp. Heat Transf. 2010, 12, 137–156. [Google Scholar] [CrossRef]
- Viskanta, R. Nusselt-Reynolds Prize Paper-Heat Transfer to Impinging Isothermal Gas and Flame Jets. Exp. Therm. Fluid Sci. 1993, 6, 111–134. [Google Scholar] [CrossRef]
- Barbosa, F.; Teixeira, S.; Teixeira, J. Experimental and numerical analysis of the influence of the nozzle-to-plate distance in a jet impingement process. Int. J. Thermodyn. 2020, 23, 81–91. [Google Scholar] [CrossRef]
- Weigand, B.; Spring, S. Multiple Jet Impingement-A Review. Heat Transf. Res. 2011, 42, 101–142. [Google Scholar] [CrossRef]
- Zuckerman, N.; Lior, N. Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. Adv. Heat Transf. 2006, 39, 565–631. [Google Scholar]
- Kalifa, R.B.; Habli, S.; Saïd, N.M.; Bournot, H.; le Palec, G. Parametric analysis of a round jet impingement on a heated plate. Int. J. Heat Fluid Flow 2016, 57, 11–23. [Google Scholar] [CrossRef]
- Angioletti, M.; Di Tommaso, R.; Nino, E.; Ruocco, G. Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets. Int. J. Heat Mass Transf. 2003, 46, 1703–1713. [Google Scholar] [CrossRef]
- Caliskan, S.; Baskaya, S.; Calisir, T. Experimental and numerical investigation of geometry effects on multiple impinging air jets. Int. J. Heat Mass Transf. 2014, 75, 685–703. [Google Scholar] [CrossRef]
- Nozaki, A.; Igarashi, Y.; Hishida, K. Heat transfer mechanism of a swirling impinging jet in a stagnation region. Heat Transf.-Asian Res. 2003, 32, 663–673. [Google Scholar] [CrossRef]
- Florschuetz, L.W.; Metzger, D.E.; Takeuchi, D.I.; Berry, R.A. Multiple Jet Impingement Heat Transfer Characteristic—Experimental Investigation of in-Line and Staggered Arrays with Crossflow. NASA Contract. Rep. 1980, 3217, 84. [Google Scholar]
- Obot, N.T.; Trabold, T. Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings. J. Heat Transf. 1987, 109, 872–879. [Google Scholar] [CrossRef]
- Chitsazan, A.; Glasmacher, B. Numerical Investigation of Heat Transfer and Pressure Force from Multiple Jets Impinging on a Moving Flat Surface. Int. J. Heat Technol. 2020, 38, 601–610. [Google Scholar] [CrossRef]
- Badra, J.; Masri, A.R.; Behnia, M. Enhanced Transient Heat Transfer from Arrays of Jets Impinging on a Moving Plate From Arrays of Jets Impinging on a Moving Plate. Heat Transf. Eng. 2013, 34, 361–371. [Google Scholar] [CrossRef]
Source | Method of Measurement | Uncertainty |
---|---|---|
Heat Flux | Heat flux sensor | ±0.577 (W/m2) |
Nozzle diameter and heat flux sensor area | Caliper | ±0.011 (mm) |
Target and jets temperature | Thermocouples type K | ±0.115 (°C) |
Grid | N° of Elements | Max y+ |
---|---|---|
Coarse | 387,072 | 3.27 |
Medium | 756,000 | 1.69 |
Fine | 1,134,000 | 1.64 |
Plate Geometry | Average Nusselt Number |
---|---|
Flat | 29.90 ± 0.45 |
Non-flat—Step 1 D | 32.72 ± 0.49 |
Non-flat—Step 2 D | 37.39 ± 0.56 |
Numerical Result | Experimental Data | Florshuetz et al. [61] | Obot and Trebold [62] |
---|---|---|---|
28.65 | 29.90 ± 0.45 | 32.63 | 25.55 |
Target Plate | Numerical Result | Experimental Data |
---|---|---|
1 D step | 31.35 | 32.72 ± 0.49 |
2 D step | 31.69 | 37.39 ± 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, F.V.; Teixeira, S.F.C.F.; Teixeira, J.C.F. Experimental and Numerical Study of Multiple Jets Impinging a Step Surface. Energies 2021, 14, 6659. https://doi.org/10.3390/en14206659
Barbosa FV, Teixeira SFCF, Teixeira JCF. Experimental and Numerical Study of Multiple Jets Impinging a Step Surface. Energies. 2021; 14(20):6659. https://doi.org/10.3390/en14206659
Chicago/Turabian StyleBarbosa, Flavia V., Senhorinha F. C. F. Teixeira, and José C. F. Teixeira. 2021. "Experimental and Numerical Study of Multiple Jets Impinging a Step Surface" Energies 14, no. 20: 6659. https://doi.org/10.3390/en14206659
APA StyleBarbosa, F. V., Teixeira, S. F. C. F., & Teixeira, J. C. F. (2021). Experimental and Numerical Study of Multiple Jets Impinging a Step Surface. Energies, 14(20), 6659. https://doi.org/10.3390/en14206659