Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Performance Indicators
2.3. Open-Field Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallaro, L.; Iuppa, C.; Castiglione, F.; Musumeci, R.; Foti, E. A Simple Model to Assess the Performance of an Overtopping Wave Energy Converter Embedded in a Port Breakwater. J. Mar. Sci. Eng. 2020, 8, 858. [Google Scholar] [CrossRef]
- IEA. Renewables 2020. Analysis and Forecast to 2025; IEA: New York, NY, USA, 2020. [Google Scholar]
- Nuchturee, C.; Li, T.; Xia, H. Energy efficiency of integrated electric propulsion for ships—A review. Renew. Sustain. Energy Rev. 2020, 134, 110145. [Google Scholar] [CrossRef]
- Maersk. Towards a Zero-Carbon Future | Maersk. Available online: https://www.maersk.com/news/articles/2019/06/26/towards-a-zero-carbon-future (accessed on 4 January 2021).
- Global Wind Energy Council. Global Wind Energy Council—GWEC: Global Wind Report 2009. 2009. Available online: http://www.gwec.net/index.php?id=167&L=0 (accessed on 4 January 2021).
- Port of Houston. Port Commission Approves Move on Renewable Energy | Business Wire. Available online: https://www.businesswire.com/news/home/20191023005777/en/Port-Commission-Approves-Move-on-Renewable-Energy (accessed on 4 January 2021).
- Port of Gotenburg. New agreement between Swedegas and FordonsGas—Liquefied Biogas Brings Further Climate Benefits to Gothenburg Shipping | Hellenic Shipping News Worldwide. Available online: https://www.hellenicshippingnews.com/new-agreement-between-swedegas-and-fordonsgas-liquefied-biogas-brings-further-climate-benefits-to-gothenburg-shipping/ (accessed on 4 January 2021).
- Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Soerensen, H.C.; Weinstein, A. Ocean Energy: Position Paper for IPCC; Intergovernmental Panel on Climate Change: Lubeck, Germany, 2009. [Google Scholar]
- Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 56, 42–54. [Google Scholar] [CrossRef]
- Gburczyk, P.; Wasiak, I.; Mienski, R.; Pawelek, R. Energy management system as a mean for the integration of distributed energy sources with low voltage network. In Proceedings of the International Conference on Electrical Power Quality and Utilisation, EPQU, Lisbon, Portugal, 17–19 October 2011; pp. 488–492. [Google Scholar] [CrossRef]
- Alvarez, E.A.; Campos-Lopez, A.M.; Gutiérrez-Trashorras, A.J. OCCAM: On-line cost-function based control algorithm for microgrids. J. Renew. Sustain. Energy 2012, 4, 033101. [Google Scholar] [CrossRef] [Green Version]
- Elbatran, A.H.; Ahmed, Y.M.; Shehata, A.S. Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy 2017, 134, 566–584. [Google Scholar] [CrossRef]
- Verdant Power. Technology Evaluation of Existing and Emerging Technologies. Water Curr. Turbines River Appl. 2006, 3502, 1–48. [Google Scholar]
- Kvalsund. Kvalsund Tidal Turbine Prototype | Tethys. Available online: https://tethys.pnnl.gov/project-sites/kvalsund-tidal-turbine-prototype (accessed on 4 January 2021).
- BlueEnergy Canada INC. Blue Energy Turbine. 2020. Available online: http://www.bluenergy.com/ (accessed on 8 January 2021).
- Oryon. ORYON WATERMILL. Available online: https://www.oryonwatermill.com/ (accessed on 4 January 2021).
- “OceanQuest—HydroQuest,” 2021. Available online: https://www.hydroquest.fr/en/oceanquest/ (accessed on 22 June 2021).
- Espina-Valdés, R.; Fernández-Jiménez, A.; Francos, J.F.; Marigorta, E.B.; Álvarez-Álvarez, E. Small cross-flow turbine: Design and testing in high blockage conditions. Energy Convers. Manag. 2020, 213, 112863. [Google Scholar] [CrossRef]
- Behrouzi, F.; Nakisa, M.; Maimun, A.; Ahmed, Y.M.; Souf-Aljen, A.S. Performance investigation of self-adjusting blades turbine through experimental study. Energy Convers. Manag. 2019, 181, 178–188. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R. Performance parameters of Savonius type hydrokinetic turbine—A Review. Renew. Sustain. Energy Rev. 2016, 64, 289–310. [Google Scholar] [CrossRef]
- Kirke, B. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew. Energy 2011, 36, 3013–3022. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Lacey, R.J.; Poncet, S. Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renew. Energy 2019, 143, 1890–1901. [Google Scholar] [CrossRef]
- Yosry, A.G.; Fernández-Jiménez, A.; Álvarez-Álvarez, E.; Marigorta, E.B. Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Convers. Manag. 2021, 237, 114144. [Google Scholar] [CrossRef]
- Singh, M.; Biswas, A.; Misra, R. Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renew. Energy 2015, 76, 381–387. [Google Scholar] [CrossRef]
- Chong, W.T.; Muzammil, W.K.; Wong, K.H.; Wang, C.-T.; Gwani, M.; Chu, Y.J.; Poh, S.-C. Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design. Appl. Energy 2017, 207, 78–95. [Google Scholar] [CrossRef]
- Sarraf, C.; Djeridi, H.; Prothin, S.; Billard, J. Thickness effect of NACA foils on hydrodynamic global parameters, boundary layer states and stall establishment. J. Fluids Struct. 2010, 26, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Gauvin-Tremblay, O.; Dumas, G. Two-way interaction between river and deployed cross-flow hydrokinetic turbines. J. Renew. Sustain. Energy 2020, 12, 034501. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, E.; Rico-Secades, M.; Fernández-Jiménez, A.; Espina-Valdés, R.; Corominas, E.L.; Calleja-Rodríguez, A.J. Hydrodynamic water tunnel for characterization of hydrokinetic microturbines designs. Clean Technol. Environ. Policy 2020, 22, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Jiménez, A.; Álvarez-Álvarez, E.; López, M.; Fouz, M.; López, I.; Gharib-Yosry, A.; Claus, R.; Carballo, R. Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig. Energies 2021, 14, 6686. https://doi.org/10.3390/en14206686
Fernández-Jiménez A, Álvarez-Álvarez E, López M, Fouz M, López I, Gharib-Yosry A, Claus R, Carballo R. Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig. Energies. 2021; 14(20):6686. https://doi.org/10.3390/en14206686
Chicago/Turabian StyleFernández-Jiménez, Aitor, Eduardo Álvarez-Álvarez, Mario López, Mateo Fouz, Iván López, Ahmed Gharib-Yosry, Rubén Claus, and Rodrigo Carballo. 2021. "Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig" Energies 14, no. 20: 6686. https://doi.org/10.3390/en14206686
APA StyleFernández-Jiménez, A., Álvarez-Álvarez, E., López, M., Fouz, M., López, I., Gharib-Yosry, A., Claus, R., & Carballo, R. (2021). Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig. Energies, 14(20), 6686. https://doi.org/10.3390/en14206686