Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review
Abstract
:1. Introduction
2. Pristine Fibers
2.1. Non-Wood Plant Cellulose Fibers
2.2. Pulp and Paper Mill Sludge
2.3. Secondary Cellulose Fibers
2.4. The Effect of Noncellulosic Components on Fibrillation
2.4.1. The Vital Role of Hemicellulose
2.4.2. The Importance of Residual Lignin on the Energy-Efficient Process
3. Mechanical Approaches
3.1. Microgrinding (MG)
3.2. High Pressure Homogenizer (HPH)
3.3. High-Pressure Microfluidizer (HPM)
3.4. Twin Screw Extruder (TSE)
4. Pretreatments
4.1. Enzymatic Pretreatment
- A.
- Cellobiohydrolases: A and B type cellulases that attack the crystalline structure.
- B.
- Endoglucanases: C and D type cellulases for breaking the amorphous region.
- C.
- Lytic polysaccharide monooxygenase (LPMO).
4.2. Chemical Pretreatments
4.2.1. TEMPO-Mediated Oxidation
4.2.2. Carboxymethylation
4.2.3. Carboxymethyl Cellulose (CMC)-Modified Cellulose Fibers
4.2.4. Periodate–Chlorite Oxidation
4.2.5. Emerging Pretreatments for Production of CNFs
Phosphorylation
Sulfoethylation
Deep Eutectic Solvent (DES)
4.2.6. Other Pretreatments
Ozone
Fenton Pretreatment
Oxone® Pretreatment
5. Commercialization and Challenges
6. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
ACC | All cellulose composites |
AQ | Anthraquinone |
BKHW | Bleached kraft hardwood pulp |
CMC | Carboxymethyl cellulose |
COO- | Carboxylate group |
CaCl2 | Calcium chloride |
CNFs | Cellulose nanofibers |
CTMP | Chemithermo mechanical pulp |
CNCs | Cellulose nanocrystals |
CMP | Chemi-mechanical pulp |
ChCl | Choline chloride |
DPFS | Date palm fruit stalks |
DESs | Deep eutectic solvents |
DP | Degree of polymerization |
NH42HPO4 | Diammonium hydrogen phosphate |
PSNFD | Dried paper sludge nanofibers |
EFB | Empty fruit bunches |
EPFBF | Empty palm fruit bunch fibers |
FESEM | Field emission electron scanning microscopy |
HPHs | High pressure homogenizers |
HPMs | High pressure microfluidizers |
HBD | Hydrogen bond transferor |
HBR | Hydrogen bond catcher |
H2O2 | Hydrogen peroxide |
OH- | Hydroxyl group |
KWh/Kg | Kilowatt-hour per kilogram |
LCNFs | Lignocellulosic nanofibers |
LNPs | Lignin nanoparticles |
LiCl | Lithium chloride |
LPMO | Lytic polysaccharide monooxygenase |
MKCA6-2J | Masuko super masscolloider |
MPa) | Megapascal |
MFA | Microfibril angle |
MFC | Micro-fibrillated cellulose |
µmol/g | Micromol per gram |
μeq. /g | Microequivalent per gram |
MCB | Milk container board |
MOP | Mixed office paper |
MSWP | Municipal solid waste paper |
PSNFND | Never-dried paper sludge nanofibers |
NSSC | Neutral sulfite semichemical |
nm | Nanometer |
OCC | Old corrugated container |
PSNF | Paper sludge nanofibers |
Ph-GH5 | Purified and commercial Endoglucanase |
RN | Recycled newsprint |
RH | Relative humidity |
SiC | Silicon carbide |
G’ | Storage modulus |
VTT | Technical Research Centre of Finland |
TEMPO | 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl |
TSE | Twin screw extruder |
VS | Vinyl sulfonate solution |
WB | Waste board |
References
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Khalil, H.A.; Davoudpour, Y.; Saurabh, C.; Hossain, S.; Adnan, A.S.; Dungani, R.; Paridah, M.; Sarker, Z.I.; Fazita, M.N.; Syakir, M.; et al. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Bina, B.; Azadbakht, P.; Pourzamani, H.; Petroudy, S.R.J. Removal of nitrate from aqueous solution using nanocrystalline cellulose. Int. J. Environ. Health Eng. 2016, 5, 17. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Syverud, K.; Chinga-Carrasco, G.; Ghasemain, A.; Resalati, H. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr. Polym. 2014, 99, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, D.; Han, Y.; Lyu, S.; Lu, Y.; Li, G.; Jiang, F.; Wang, S. Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose 2018, 25, 6421–6431. [Google Scholar] [CrossRef]
- Winter, A.; Andorfer, L.; Herzele, S.; Zimmermann, T.; Saake, B.; Edler, M.; Griesser, T.; Konnerth, J.; Gindl-Altmutter, W. Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. J. Mater. Sci. 2016, 52, 60–72. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Kahagh, S.A.; Vatankhah, E. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw. Carbohydr. Polym. 2021, 251, 117087. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Ghasemian, A.; Resalati, H.; Syverud, K.; Chinga-Carrasco, G. The effect of xylan on the fibrillation efficiency of DED bleached soda bagasse pulp and on nanopaper characteristics. Cellulose 2014, 22, 385–395. [Google Scholar] [CrossRef]
- Solala, I.; Volperts, A.; Andersone, A.; Dizhbite, T.; Mironova-Ulmane, N.; Vehniäinen, A.; Pere, J.; Vuorinen, T. Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 2012, 66, 477–483. [Google Scholar] [CrossRef]
- Pennells, J.; Godwin, I.D.; Amiralian, N.; Martin, D.J. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 2019, 27, 575–593. [Google Scholar] [CrossRef]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Lindstrom, T.; Naderi, A.; Wiberg, A. Large Scale Applications of Nanocellulosic Materials—A Comprehensive Review. J. Korea Tech. Assoc. Pulp Pap. Ind. 2015, 47, 5–21. [Google Scholar] [CrossRef]
- Zimmermann, T.; Bordeanu, N.; Strub, E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 2010, 79, 1086–1093. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 2011, 18, 1097–1111. [Google Scholar] [CrossRef]
- Tejado, A.; Alam, N.; Antal, M.; Yang, H.; Van De Ven, T.G.M. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 2012, 19, 831–842. [Google Scholar] [CrossRef]
- Naderi, A.; Lindström, T.; Sundström, J. Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 2015, 22, 1147–1157. [Google Scholar] [CrossRef]
- Naderi, A.; Lindström, T.; Sundström, J.; Pettersson, T.; Flodberg, G.; Erlandsson, J. Microfluidized carboxymethyl cellulose modified pulp: A nanofibrillated cellulose system with some attractive properties. Cellulose 2015, 22, 1159–1173. [Google Scholar] [CrossRef]
- Henriksson, M.; Berglund, L.; Isaksson, P.; Lindström, T.; Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules 2008, 9, 1579–1585. [Google Scholar] [CrossRef]
- Petroudy, S.D. Physical and Mechanical Properties of Natural Fibers; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 59–83. [Google Scholar]
- Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 2015, 22, 935–969. [Google Scholar] [CrossRef]
- Hassan, M.; Berglund, L.; Hassan, E.; Abou-Zeid, R.; Oksman, K. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose 2018, 25, 2939–2953. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, W.; Zhang, Y.; Ben, H.; Han, G.; Ragauskas, A.J. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose 2018, 25, 4979–4992. [Google Scholar] [CrossRef]
- Ferrer, A.; Filpponen, I.; Rodríguez, A.; Laine, J.; Rojas, O. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour. Technol. 2012, 125, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Bras, J.; Hassan, E.; Silard, C.; Mauret, E. Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind. Crop. Prod. 2014, 55, 102–108. [Google Scholar] [CrossRef]
- Josset, S.; Orsolini, P.; Siqueira, G.; Tejado, A.; Tingaut, P.; Zimmermann, T. Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord. Pulp Pap. Res. J. 2014, 29, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Suopajärvi, T.; Liimatainen, H.; Niinimäki, J. Morphological Analyses of Some Micro- and Nanofibrils from Birch and Wheat Straw Sources. J. Wood Chem. Technol. 2014, 35, 102–112. [Google Scholar] [CrossRef]
- Dufresne, A.; Cavaillé, J.Y.; Vignon, M.R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 1997, 64, 1185–1194. [Google Scholar] [CrossRef]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Vélez, J.; Mondragon, I.; Gañán, P. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Shakeri, A.; Misra, M.; Oksmand, K. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 2009, 4, 626–639. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Tahir, P.M.; Zaini, L.H.; SaifulAzry, S.; Makinejad, M.D. Characteristics of nanofibers extracted from kenaf core. BioResources 2010, 5, 2556–2566. [Google Scholar] [CrossRef]
- Jonoobi, M.; Mathew, A.P.; Oksman, K. Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind. Crop. Prod. 2012, 40, 232–238. [Google Scholar] [CrossRef]
- Hassan, M.L.; Mathew, A.P.; Hassan, E.A.; El-Wakil, N.A.; Oksman, K. Nanofibers from bagasse and rice straw: Process optimization and properties. Wood Sci. Technol. 2012, 46, 193–205. [Google Scholar] [CrossRef]
- Charani, P.R.; Dehghani-Firouzabadi, M.; Afra, E.; Shakeri, A. Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 2013, 20, 727–740. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, R.; Gao, L.; Li, J. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. Carbohydr. Polym. 2016, 136, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Boufi, S.; Gandini, A. Triticale crop residue: A cheap material for high performance nanofibrillated cellulose. RSC Adv. 2015, 5, 3141–3151. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Qin, C.; Yang, S.; Song, X.; Wang, S.; Li, K. Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics. Cellulose 2018, 25, 7065–7078. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Fang, O.C. Assessing the properties of freshly mixed concrete containing paper-mill residuals and class F fly ash. J. Civ. Eng. Constr. Technol. 2011, 2, 17–26. [Google Scholar]
- De Alda, J.A.G.O. Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour. Conserv. Recycl. 2008, 52, 965–972. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Riedl, B.; Nadji, H.; Deng, J.; Zhang, S.Y. Binderless fiberboard made from primary and secondary pulp and paper sludge. Wood Fiber Sci. 2011, 43, 180–193. [Google Scholar]
- Koubaa, A.; Riedl, B. Medium-density fiberboard produced using pulp and paper sludge from different pulping processes. Wood Fiber Sci. 2010, 42, 1–12. [Google Scholar]
- Leao, A.; Cherian, B.M.; De Souza, S.F.; Sain, M.; Narine, S.; Caldeira, M.S.; Toledo, M.A.S. Use of Primary Sludge from Pulp and Paper Mills for Nanocomposites. Mol. Cryst. Liq. Cryst. 2012, 556, 254–263. [Google Scholar] [CrossRef]
- Adu, C.; Berglund, L.; Oksman, K.; Eichhorn, S.J.; Jolly, M.; Zhu, C. Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. J. Clean. Prod. 2018, 197, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A. Comparison of the properties of chemical cellulose pulps. Cellulose 1994, 1, 107–130. [Google Scholar] [CrossRef]
- Spinu, M.; Dos Santos, N.; Le Moigne, N.; Navard, P. How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 2010, 18, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Hietala, M.; Varrio, K.; Berglund, L.; Soini, J.; Oksman, K. Potential of municipal solid waste paper as raw material for production of cellulose nanofibres. Waste Manag. 2018, 80, 319–326. [Google Scholar] [CrossRef]
- Danial, W.H.; Majid, Z.A.; Muhid, M.N.M.; Triwahyono, S.; Bakar, M.B.; Ramli, Z. The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr. Polym. 2015, 118, 165–169. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.; Zhang, R. Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp. BioResources 2012, 8, 1374–1384. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhu, J. Facile preparation of nanofiller-paper using mixed office paper without deinking. Tappi J. 2015, 14, 167–174. [Google Scholar] [CrossRef]
- Iwamoto, S.; Abe, K.; Yano, H. The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics. Biomacromolecules 2008, 9, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Kai, W.; Isogai, T.; Saito, T.; Isogai, A.; Iwata, T. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym. Degrad. Stab. 2010, 95, 1394–1398. [Google Scholar] [CrossRef]
- Chaker, A.; Alila, S.; Mutjé, P.; Vilar, M.R.; Boufi, S. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 2013, 20, 2863–2875. [Google Scholar] [CrossRef]
- Chaker, A.; Mutjé, P.; Vilar, M.R.; Boufi, S. Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 2014, 21, 4247–4259. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditti, R.A.; Habibi, Y.; Rojas, O.; Pawlak, J.J. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresour. Technol. 2010, 101, 5961–5968. [Google Scholar] [CrossRef] [PubMed]
- Osong, S.H.; Norgren, S.; Engstrand, P. An approach to produce nano-ligno-cellulose from mechanical pulp fine materials. Nord. Pulp Pap. Res. J. 2013, 28, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Lahtinen, P.; Liukkonen, S.; Pere, J.; Sneck, A.; Kangas, H. A Comparative Study of Fibrillated Fibers from Different Mechanical and Chemical Pulps. BioResources 2014, 9, 2115–2127. [Google Scholar] [CrossRef]
- Rojo, E.; Peresin, M.S.; Sampson, W.W.; Hoeger, I.C.; Vartiainen, J.; Laine, J.; Rojas, O.J. Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem. 2015, 17, 1853–1866. [Google Scholar] [CrossRef] [Green Version]
- Santucci, B.S.; Bras, J.; Belgacem, M.N.; Curvelo, A.A.D.S.; Pimenta, M.T.B. Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Ind. Crop. Prod. 2016, 91, 238–248. [Google Scholar] [CrossRef]
- Correia, V.D.C.; dos Santos, V.; Sain, M.; Santos, S.F.; Leão, A.L.; Junior, H.S. Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 2016, 23, 2971–2987. [Google Scholar] [CrossRef] [Green Version]
- Liimatainen, H.; Visanko, M.; Sirviö, J.; Hormi, O.E.O.; Niinimaki, J. Enhancement of the Nanofibrillation of Wood Cellulose through Sequential Periodate–Chlorite Oxidation. Biomacromolecules 2012, 13, 1592–1597. [Google Scholar] [CrossRef]
- Tripathi, A.; Ferrer, A.; Khan, S.A.; Rojas, O.J. Morphological and Thermochemical Changes upon Autohydrolysis and Microemulsion Treatments of Coir and Empty Fruit Bunch Residual Biomass to Isolate Lignin-Rich Micro- and Nanofibrillar Cellulose. ACS Sustain. Chem. Eng. 2017, 5, 2483–2492. [Google Scholar] [CrossRef]
- Nie, S.; Zhang, K.; Lin, X.; Zhang, C.; Yan, D.; Liang, H.; Wang, S. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr. Polym. 2018, 181, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Malucelli, L.C.; Matos, M.; Jordão, C.; Lomonaco, D.; Lacerda, L.G.; Filho, M.A.S.C.; Magalhaes, W. Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose 2018, 26, 1667–1681. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Rahmani, N.; Garmaroody, E.R.; Rudi, H.; Ramezani, O. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties. Int. J. Biol. Macromol. 2019, 135, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, X.; Yang, Q.; Song, X.; Qin, C.; Wang, S.; Li, K. Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 2018, 25, 6479–6494. [Google Scholar] [CrossRef]
- Dizhbite, T.; Telysheva, G.; Jurkjane, V.; Viesturs, U. Characterization of the radical scavenging activity of lignins–natural antioxidants. Bioresour. Technol. 2004, 95, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Li, K. The Effect of Fiber Surface Lignin on Interfiber Bonding. J. Wood Chem. Technol. 2006, 26, 231–244. [Google Scholar] [CrossRef]
- Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef]
- Espinosa, E.; Domínguez-Robles, J.; Sánchez, R.; Tarrés, Q.; Rodríguez, A. The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose 2017, 24, 2605–2618. [Google Scholar] [CrossRef]
- He, M.; Yang, G.; Chen, J.; Ji, X.; Wang, Q. Production and Characterization of Cellulose Nanofibrils from Different Chemical and Mechanical Pulps. J. Wood Chem. Technol. 2018, 38, 149–158. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for Extraction of Nanocellulose from Various Sources. In Handbook of Nanocellulose and Cellulose Nanocomposites; John Wiley & Sons, USA. John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–49. [Google Scholar] [CrossRef]
- Müller, R.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar] [CrossRef]
- Kalia, S.; Boufi, S.; Celli, A.; Kango, S. Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polym. Sci. 2014, 292, 5–31. [Google Scholar] [CrossRef]
- Park, J.I.; Saffari, A.; Kumar, S.; Guenther, A.; Kumacheva, E. Microfluidic Synthesis of Polymer and Inorganic Particulate Materials. Annu. Rev. Mater. Res. 2010, 40, 415–443. [Google Scholar] [CrossRef]
- De Moura, M.R.; Aouada, F.A.; De Azeredo, H.M.C.; Mattoso, L.H.C. Microfluidizer Technique for Improving Microfiber Properties Incorporated Into Edible and Biodegradable Films. Adv. Microfluid. 2012, 10, 219–240. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; McClements, D.J. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. J. Colloid Interface Sci. 2016, 479, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Otoni, C.G.; Carvalho, A.S.; Cardoso, M.; Bernardinelli, O.D.; Lorevice, M.V.; Colnago, L.A.; Loh, W.; Mattoso, L.H.C. High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites. ACS Sustain. Chem. Eng. 2018, 6, 12727–12735. [Google Scholar] [CrossRef]
- Solala, I.; Iglesias, M.C.; Peresin, M.S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): A review on properties and applications. Cellulose 2019, 27, 1853–1877. [Google Scholar] [CrossRef]
- Aulin, C.; Gällstedt, M.; Lindström, T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 2010, 17, 559–574. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Ranjbar, J.; Garmaroody, E.R. Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr. Polym. 2018, 197, 565–575. [Google Scholar] [CrossRef]
- Ho, T.T.T.; Abe, K.; Zimmermann, T.; Yano, H. Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 2014, 22, 421–433. [Google Scholar] [CrossRef]
- Baati, R.; Magnin, A.; Boufi, S. High Solid Content Production of Nanofibrillar Cellulose via Continuous Extrusion. ACS Sustain. Chem. Eng. 2017, 5, 2350–2359. [Google Scholar] [CrossRef]
- Rol, F.; Karakashov, B.; Nechyporchuk, O.; Terrien, M.; Meyer, V.; Dufresne, A.; Belgacem, M.N.; Bras, J. Pilot-Scale Twin Screw Extrusion and Chemical Pretreatment as an Energy-Efficient Method for the Production of Nanofibrillated Cellulose at High Solid Content. ACS Sustain. Chem. Eng. 2017, 5, 6524–6531. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Perić, M.; Putz, R.; Paulik, C. Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). Eur. Polym. J. 2019, 114, 426–433. [Google Scholar] [CrossRef]
- Rol, F.; Banvillet, G.; Meyer, V.; Petit-Conil, M.; Bras, J. Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J. Mater. Sci. 2018, 53, 12604–12615. [Google Scholar] [CrossRef]
- Henriksson, M.; Berglund, L.; Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 2007, 43, 3434–3441. [Google Scholar] [CrossRef]
- Hassan, E.A.; Hassan, M.L.; Oksman, K. Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci. 2011, 43, 76–82. [Google Scholar]
- Wang, W.; Mozuch, M.D.; Sabo, R.C.; Kersten, P.; Zhu, J.Y.; Jin, Y. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider. Cellulose 2016, 23, 1859–1870. [Google Scholar] [CrossRef]
- Jeoh, T.; Cardona, M.J.; Karuna, N.; Mudinoor, A.R.; Nill, J. Mechanistic kinetic models of enzymatic cellulose hydrolysis—A review. Biotechnol. Bioeng. 2017, 114, 1369–1385. [Google Scholar] [CrossRef]
- French, A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 2017, 24, 4605–4609. [Google Scholar] [CrossRef]
- Yoo, S.; Hsieh, J.S. Enzyme-Assisted Preparation of Fibrillated Cellulose Fibers and Its Effect on Physical and Mechanical Properties of Paper Sheet Composites. Ind. Eng. Chem. Res. 2010, 49, 2161–2168. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Sabo, R.; Luo, X. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 2011, 13, 1339–1344. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.M.; Menegalli, F.C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT 2014, 59, 1311–1318. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; Tarrés, Q.; Puig, J.; Boufi, S.; Blanco, A.; Pujol, P.M. Enzymatic Refining and Cellulose Nanofiber Addition in Papermaking Processes from Recycled and Deinked Slurries. BioResources 2015, 10, 5730–5743. [Google Scholar] [CrossRef] [Green Version]
- Martelli-Tosi, M.; Torricillas, M.D.S.; Martins, M.A.; De Assis, O.B.G.; Tapia-Blácido, D.R. Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw. J. Nanomater. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Song, X.; Qin, C.; Wang, S.; Li, K. A bio-mechanical process for cellulose nanofiber production—Towards a greener and energy conservation solution. Carbohydr. Polym. 2019, 208, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sabo, R.C.; Mozuch, M.D.; Kersten, P.; Zhu, J.Y.; Jin, Y. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization. J. Polym. Environ. 2015, 23, 551–558. [Google Scholar] [CrossRef]
- Wang, W.; Mozuch, M.D.; Sabo, R.C.; Kersten, P.; Zhu, J.Y.; Jin, Y. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 2015, 22, 351–361. [Google Scholar] [CrossRef]
- Ankerfors, M. Microfibrillated Cellulose: Energy—Efficient Preparation Techniques and Applications in Paper. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Saito, T.; Okita, Y.; Nge, T.; Sugiyama, J.; Isogai, A. TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products. Carbohydr. Polym. 2006, 65, 435–440. [Google Scholar] [CrossRef]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Ox. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 2009, 10, 1992–1996. [Google Scholar] [CrossRef]
- Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10, 162–165. [Google Scholar] [CrossRef]
- Saito, T.; Hirota, M.; Tamura, N.; Isogai, A. Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: Effect of the oxidation conditions on carboxylate content and degree of polymerization. J. Wood Sci. 2010, 56, 227–232. [Google Scholar] [CrossRef]
- Loranger, E.; Piché, A.-O.; Daneault, C. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp. Nanomaterials 2012, 2, 286–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, I.I.C.; Carrillo, I.B.S.; Germain, H.; Loranger, É.; Chabot, B. Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration. J. Environ. Chem. Eng. 2021, 9, 106204. [Google Scholar] [CrossRef]
- Myja, D.; Loranger, E.; Lanouette, R. TEMPO Mediated Oxidation Optimization on Thermomechanical Pulp for Paper Reinforcement and Nanomaterial Film Production. BioResources 2018, 13, 4075–4092. [Google Scholar] [CrossRef]
- Myja, D.; Loranger, E.; Lanouette, R. The effects of 4-acetamido-TEMPO-mediated oxidation on the extraction components of thermomechanical pulp. Cellulose 2019, 26, 5653–5663. [Google Scholar] [CrossRef]
- De Nooy, A.E.; Besemer, A.C.; van Bekkum, H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 1995, 269, 89–98. [Google Scholar] [CrossRef]
- Chang, P.S.; Robyt, J.F. Oxidation of Primary Alcohol Groups of Naturally Occurring Polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine Oxoammonium Ion. J. Carbohydr. Chem. 1996, 15, 819–830. [Google Scholar] [CrossRef]
- Biliuta, G.; Fras, L.; Strnad, S.; Harabagiu, V.; Coseri, S. Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 4790–4799. [Google Scholar] [CrossRef]
- Isogai, T.; Yanagisawa, M.; Isogai, A. Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 2008, 16, 117–127. [Google Scholar] [CrossRef]
- Isogai, A. Review Development of completely dispersed cellulose nano fi bers. Proc. Jpn. Acad. Ser. B 2018, 94, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Kuramae, R.; Saito, T.; Isogai, A. TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React. Funct. Polym. 2014, 85, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Alila, S.; Besbes, I.; Vilar, M.R.; Mutjé, P.; Boufi, S. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Ind. Crop. Prod. 2013, 41, 250–259. [Google Scholar] [CrossRef]
- Tarrés, Q.; Boufi, S.; Mutjé, P.; Delgado-Aguilar, M. Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: Morphological, optical, thermal and mechanical properties. Cellulose 2017, 24, 3943–3954. [Google Scholar] [CrossRef]
- Puangsin, B.; Fujisawa, S.; Kuramae, R.; Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Hemp Bast Holocellulose to Prepare Cellulose Nanofibrils Dispersed in Water. J. Polym. Environ. 2012, 21, 555–563. [Google Scholar] [CrossRef]
- Okita, Y.; Saito, T.; Isogai, A. Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation. Biomacromolecules 2010, 11, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Wågberg, L.; Decher, G.; Norgren, M.; Lindström, T.; Ankerfors, M.; Axnäs, K. The Build-Up of Polyelectrolyte Multilayers of Microfibrillated.pdf. PEMs of MFC and Cationic Polyelectrolytes oxide. Langmuir 2008, 24, 784–795. [Google Scholar] [CrossRef]
- Ahola, S.; Salmi, J.; Johansson, L.-S.; Laine, J.; Österberg, M. Model Films from Native Cellulose Nanofibrils. Preparation, Swelling, and Surface Interactions. Biomacromolecules 2008, 9, 1273–1282. [Google Scholar] [CrossRef]
- Eyholzer, C.; Bordeanu, N.; Lopez-Suevos, F.; Rentsch, D.; Zimmermann, T.; Oksman, K. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 2010, 17, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Taipale, T.; Österberg, M.; Nykänen, A.; Ruokolainen, J.; Laine, J. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 2010, 17, 1005–1020. [Google Scholar] [CrossRef]
- Arvidsson, R.; Nguyen, D.; Svanström, M. Life Cycle Assessment of Cellulose Nanofibrils Production by Mechanical Treatment and Two Different Pretreatment Processes. Environ. Sci. Technol. 2015, 49, 6881–6890. [Google Scholar] [CrossRef]
- Onyianta, A.J.; Dorris, M.; Williams, R.L. Aqueous morpholine pre-treatment in cellulose nanofibril (CNF) production: Comparison with carboxymethylation and TEMPO oxidisation pre-treatment methods. Cellulose 2018, 25, 1047–1064. [Google Scholar] [CrossRef] [Green Version]
- Laine, J.; Lindstrom, T.; Brernberg, C.; Glad-Nordrnark, G. Studies on topochemical modification of cellulosic fibres. Nord. Pulp Pap. Res. J. 2003, 18, 316–324. [Google Scholar] [CrossRef]
- Horvath, A.E.; Lindström, T.; Laine, J. On the Indirect Polyelectrolyte Titration of Cellulosic Fibers. Conditions for Charge Stoichiometry and Comparison with ESCA. Langmuir 2006, 22, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Duker, E.; Ankerfors, M.; Lindström, T.; Nordmark, G.G. The use of CMC as a dry strength agent—The interplay between CMC attachment and drying. Nord. Pulp Pap. Res. J. 2008, 23, 65–71. [Google Scholar] [CrossRef]
- Wågberg, L.; Winter, L.; Ödberg, L.; Lindström, T. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surfaces 1987, 27, 163–173. [Google Scholar] [CrossRef]
- Naderi, A.; Lindström, T.; Sundström, J.; Flodberg, G.; Erlandsson, J. A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord. Pulp Pap. Res. J. 2016, 31, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Sirviö, J.; Hyvakko, U.; Liimatainen, H.; Niinimaki, J.; Hormi, O. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr. Polym. 2011, 83, 1293–1297. [Google Scholar] [CrossRef]
- Kekäläinen, K.; Liimatainen, H.; Niinimäki, J. Disintegration of periodate–chlorite oxidized hardwood pulp fibres to cellulose microfibrils: Kinetics and charge threshold. Cellulose 2014, 21, 3691–3700. [Google Scholar] [CrossRef]
- Chinga-Carrasco, G.; Syverud, K. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J. Biomater. Appl. 2014, 29, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Chen, D.; Van De Ven, T.G.M. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 2015, 22, 1743–1752. [Google Scholar] [CrossRef]
- Errokh, A.; Magnin, A.; Putaux, J.-L.; Boufi, S. Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose 2018, 25, 3899–3911. [Google Scholar] [CrossRef]
- Hou, Q.X.; Liu, W.; Liu, Z.H.; Bai, L.L. Characteristics of Wood Cellulose Fibers Treated with Periodate and Bisulfite. Ind. Eng. Chem. Res. 2007, 46, 7830–7837. [Google Scholar] [CrossRef]
- Rajalaxmi, D.; Jiang, N.; Leslie, G.; Ragauskas, A.J. Synthesis of novel water-soluble sulfonated cellulose. Carbohydr. Res. 2010, 345, 284–290. [Google Scholar] [CrossRef]
- Liimatainen, H.; Visanko, M.; Sirvio, J.A.; Hormi, O.; Niinimäki, J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 2013, 20, 741–749. [Google Scholar] [CrossRef]
- Larsson, P.A.; Berglund, L.A.; Wågberg, L. Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose 2014, 21, 323–333. [Google Scholar] [CrossRef]
- Larsson, P.A.; Berglund, L.; Wågberg, L. Ductile All-Cellulose Nanocomposite Films Fabricated from Core–Shell Structured Cellulose Nanofibrils. Biomacromolecules 2014, 15, 2218–2223. [Google Scholar] [CrossRef]
- Naderi, A.; Koschella, A.; Heinze, T.; Shih, K.-C.; Nieh, M.-P.; Pfeifer, A.; Chang, C.-C.; Erlandsson, J. Sulfoethylated nanofibrillated cellulose: Production and properties. Carbohydr. Polym. 2017, 169, 515–523. [Google Scholar] [CrossRef]
- Ablouh, E.-H.; Brouillette, F.; Taourirte, M.; Sehaqui, H.; El Achaby, M.; Belfkira, A. A highly efficient chemical approach to producing green phosphorylated cellulosic macromolecules. RSC Adv. 2021, 11, 24206–24216. [Google Scholar] [CrossRef]
- Shi, Y.; Belosinschi, D.; Brouillette, F.; Belfkira, A.; Chabot, B. Phosphorylation of Kraft fibers with phosphate esters. Carbohydr. Polym. 2014, 106, 121–127. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Carosio, F.; Larsson, P.T.; Wågberg, L. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Biomacromolecules 2015, 16, 3399–3410. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Homma, I.; Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 2017, 24, 1295–1305. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Liu, J.-Z.; Wang, L.-T.; Kang, Y.-F.; Meng, Y.; Jiao, J.; Fu, Y.-J. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Li, P.; Sirviö, J.A.; Haapala, A.; Liimatainen, H. Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments. ACS Appl. Mater. Interfaces 2017, 9, 2846–2855. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Bell, T.J.; Handa, S.; Stoddart, B. Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem. 2006, 8, 784–786. [Google Scholar] [CrossRef] [Green Version]
- Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr. Polym. 2017, 169, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Tenhunen, T.-M.; Lewandowska, A.E.; Orelma, H.; Johansson, L.-S.; Virtanen, T.; Harlin, A.; Österberg, M.; Eichhorn, S.J.; Tammelin, T. Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 2017, 25, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Sirviö, J.A.; Visanko, M.; Liimatainen, H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem. 2015, 17, 3401–3406. [Google Scholar] [CrossRef]
- Selkälä, T.; Sirviö, J.A.; Lorite, G.S.; Liimatainen, H. Anionically Stabilized Cellulose Nanofibrils through Succinylation Pretreatment in Urea-Lithium Chloride Deep Eutectic Solvent. ChemSusChem 2016, 9, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Tabar, I.B.; Zhang, X.; Youngblood, J.P.; Mosier, N.S. Production of cellulose nanofibers using phenolic enhanced surface oxidation. Carbohydr. Polym. 2017, 174, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hellström, P.; Heijnesson-Hultén, A.; Paulsson, M.; Håkansson, H.; Germgård, U. The effect of Fenton chemistry on the properties of microfibrillated cellulose. Cellulose 2014, 21, 1489–1503. [Google Scholar] [CrossRef]
- Ruan, C.-Q.; Gustafsson, S.; Strømme, M.; Mihranyan, A.; Lindh, J. Cellulose Nanofibers Prepared via Pretreatment Based on Oxone® Oxidation. Molecules 2017, 22, 2177. [Google Scholar] [CrossRef] [Green Version]
- Ruan, C.-Q.; Strømme, M.; Mihranyan, A.; Lindh, J. Favored surface-limited oxidation of cellulose with Oxone® in water. RSC Adv. 2017, 7, 40600–40607. [Google Scholar] [CrossRef] [Green Version]
- Kachkarova-Sorokina, S.L.; Gallezot, P.; Sorokin, A.B. A novel clean catalytic method for waste-free modification of polysaccharides by oxidation. Chem. Commun. 2004, 2844–2845. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, D.O.; Lindh, J.; Nyholm, L.; Strømme, M.; Mihranyan, A. Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv. 2014, 4, 52289–52298. [Google Scholar] [CrossRef]
Pristine Raw Material | Mechanical Process | Energy Consumption (kWh/kg) | CNFs Diameters (nm) | Reference |
---|---|---|---|---|
Sugar beet | Homogenization | N.D * | - | [28] |
Wheat straw Soy hull | Homogenized at pressure ≥300 bar | N.D | 10–80 20–120 | [29] |
Banana rachis | Waring blender | N.D | 3–5 | [30] |
Wheat straw Refined fibrous wheat straw | HPH Microfluidization | Requires fewer passes through HPH | Homogenous network structures (less than 100) | [14] |
Unbleached kenaf bast fiber Bleached kenaf bast fiber | HPH | N.D | 20–40 10–30 | [31] |
Kenaf core fibers | HPH | N.D | 20-25 | [32] |
Empty fruit bunches (EFB) of oil palm | HPH | N.D | 5–40 | [33] |
Sugarcane bagasse | Ultrafine grinder Microfluidization | N.D | 5–15 | [34] |
Rice straw | Ultrafine grinder Microfluidization | N.D | 4–13 | [34] |
Empty Palm Fruit Bunch Fibers (EPFBF) | HPH Microfluidization | N.D | 10–30 | [24] |
Unbleached kenaf pulp | Microfluidization | N.D | Less than 100 | [35] |
Wheat straw | 10 times grinding at 1500 rpm | 5.75 | N.D | [26] |
Corn husk | High intensity ultrasonication | N.D | 50 to 250 | [36] |
Triticale crop residue Fiber oxidized with TEMPO | HPH High speed blender | 40–45 9–12 | 20–30 | [37] |
Bleached bagasse kraft | Microgrinding | 33.55 | 23.58 ± 8.63 | [38] |
Unbleached soda rice straw | Microgrinding | 11.4 | ≤17 | [22] |
Unbleached NSSC rice straw | Microgrinding | 11.2 | ≤17 | [22] |
Pristine Fibers | Residual Lignin (%) | Type of Mechanical Approach | LCNF Yield (%) | LCNF Diameter (nm) | Energy Consumption (kWh/kg) | Water Contact Angle (°) | Reference |
---|---|---|---|---|---|---|---|
Birch kraft pulp: Unbleached Oxygen delignified | 2.2 1.5 | Grinder | - | - | - - | [20] | |
Birch: Unbleached Oxygen delignified | 2.7 1.9 | HPF | - - | 10–40 10–40 | - - | 60 ± 6 54 ± 6 | [9] |
Softwood kraft pulp: Bleached Unbleached CTMP TMP | 1.0 2.6 20.6 25.6 | Grinder | 20 15 9 2 | - | - | - | [21] |
SEW fiber of spruce: Low lignin Medium lignin High lignin | 1.7 3.7 13.5 | HPF | - | 44 ± 3 20 ± 2 16 ± 2 | 49 61 78 | [22] | |
Wheat straw: TO-LCNF Mec.LCNF Enz. LCNF | 17.7 | - HPH HPH HPH | ≥95 55.6 37.45 | 6.81 14.01 14.52 | - | - | [23] |
Pine kraft Poplar CTMP | 6.82 18.81 | Grinder | - | - | 15.49 15.25 | - | [18] |
Rice straw pulp: Soda Soda-Enz. NSSC NSSC-Enz | 16.43 8.06 7.98 14.15 13.18 | Grinder | 13 ± 5 11 ± 5 17 ± 6 14 ± 7 | 11.4 10.5 11.2 13.5 | 61.4 60.3 69.7 63.9 | [15] | |
Poplar: High lignin Medium lignin Low lignin Very low Lignin | 22.1 14.1 2.0 0.2 | Grinder | - | 15.1 ± 3.5 16.4 ± 3.3 15.4 ± 3.4 17.1 ± 3.5 | - | 45 41.2 16.5 9.3 | [24] |
Organosolv bagasse pulp: High lignin Medium lignin Low lignin | 14.91 2.41 0.11 | Grinder | 51 46 39 | 9.2 ± 3.3 22.7 ± 6.7 32.9 ± 7.7 | 39 38 37 | - | [19] |
Kraft bagasse pulp: Medium lignin Low lignin | 2.7 0.1 | Grinder | 46 39 | 38 37 | - | [14] | |
Hardwood Chemi-mechanical (CMP) pulps: High lignin Medium lignin Low lignin | 18.8 10.9 1.98 | Grinder Grinder Grinder | - - - | 19 ± 3.5 30 ± 7.3 40 ± 7.9 | 2.1 4.5 5.4 | - - - | [25] |
Hardwood neutral sulfite semichemical (NSSC) pulps: High lignin Low lignin | 16.8 1.5 | Grinder Grinder | - - | 22 ± 3.8 35 ± 6.5 | 4.2 5.1 | - - | [25] |
Type of Mechanical Process | Initial Consistency of Starting Material (%) | Fibrillation Systems | Necessity of Pre-Treatments | Output (kg/min) |
---|---|---|---|---|
Ultrafine grinding | 1–2.5 | Disk grinding | No | 2 |
HPH | 0.5–1 | Homogenization | Compulsory; one of the mechanical, enzymatic, and chemical pre-treatments | 1 |
HPF | 1 | Fluidization | Compulsory; one of the mechanical, enzymatic, and chemical pre-treatments | 0.2 |
Starting Material | Used Enzyme | Process | Results | Reference |
---|---|---|---|---|
Bleached softwood sulfite | Endoglucanase | HPH | High aspect ratio, the stronger gel network | [28] |
Bleached softwood sulfite | Endoglucanase | HPH | High aspect ratio, lower DP, Homogenous distribution of nanofiber | [27] |
Bleached kraft bagasse | Cellulase, Xylanase | Grinding and homogenization | Smaller diameter microfibrils bands, reducing energy consumption | [8] |
Bleached softwood pulp | Cellulase | Grinding | Improving the efficiency of fibril production, reduction in operating cost | [29] |
Bleached kraft eucalyptus pulp | Cellulase | Microfluidizer | Facilitating mechanical homogenization, reducing the DP | [30] |
Bleached soda date palm fruit stalks | Xylanase | High-shear ultrafine friction grinder | The larger diameter of nanofiber and higher density and tensile strength of CNF film | [31] |
Bleached soda bagasse | Endoglucanase | HPH | Better fibrillation | [32] |
Banana peel | Xylanase | ------- | Higher aspect ratio, higher crystallinity | [33] |
Bleached kraft hardwood | Novozym ® 476 | HPH | Higher fibrillation | [34] |
Soybean straw | Enzymatic cocktail (xylanse, endoglucanse) | Turrax and sonication | The smaller diameter of nanofiber | [35] |
Bleached kraft eucalyptus pulp | Purified and commercial Endoglucanase (Ph-GH5) | Microfluidization | Nanosize uniformity of CNFs, DP reducing | [16] |
Bleached softwood pulp | Mono-component endoglucanase | Microgrinding | Mechanical energy-saving, uniformity of cellulose fibrils | [36] |
Starting Materials | TEMPO System Used | Fibril Diameter (nm) | Carboxylate Group Content (mmol/g) | Reference |
---|---|---|---|---|
TEMPO-oxidized spruce holocellulose TEMPO-oxidized Cotton linters TEMPO-oxidized ramie | TEMPO, NaBr, NaClO | Crystal size (nm)3.2 6.2 5.8 | 1.16 0.67 0.94 | [37] |
Never-dried hardwood Once-dried hardwood | TEMPO, NaBr, NaClO | 3–4 | 1.5 1.5 | [38] |
Softwood kraft pulp Hardwood kraft pulp | TEMPO, NaBr, NaClO | 3–4 | 1.5 1.5 | [39] |
Hardwood kraft pulp | TEMPO, NaClO2, NaClO | 5 | 0.8 | [40] |
Pristine Fibers | DESs System Used | Applied Mechanical Treatment | CNF Properties | References | ||
---|---|---|---|---|---|---|
Diameter (nm) | DP | Crystallinity(%) | ||||
Bleached birch pulp (Betula pendula) | Choline chloride and urea | Microfluidizer | 2–5 | No change | No change | [45] |
Bleached birch pulp (Betula pendula) | Ammonium thiocyanate and urea | Microfluidizer | 10.7–21.4 | 3337 | - | [48] |
Bleached birch pulp (Betula pendula) | Guanidine hydrochloride and urea | Microfluidizer | 11.5–15.8 | 3315 | - | [48] |
Commercial softwood dissolving pulp | Lithium chloride and urea | Microfluidizer | 2–7 | 1646–1676 | 10–18% Drop | [49] |
Waste board (WB) and milk container board (MCB) | Choline chloride and urea | Masuku grinder Microfluidizer | 2–80 | - | 47–61 | [46] |
The Commercial Name of Facility | Country Located | Capacity Tons/Year |
---|---|---|
Kruger Biomaterials Inc. | Canada | 6000 |
Domtar | Canada | 50–75 tons/day |
American Process Inc. | USA | 100 |
University of Maine, Process Development Center | USA | 1 ton/day |
Turners Falls Paper, Paperlogic | USA | 2 tons/day |
Fibria | Brazil | 2 tons/day |
Suzano | Brazil | 50 kg/day |
Borregaard | Norway | 1000 |
Norsk Skog | Norway | 1 ton/day |
RISE Bioeconomy | Sweden | 1 ton/day |
Stora Enso Ltd. | Sweden | Industrial |
UPM-Kymmene Ltd. | Sweden/Finland | Pilot scale |
VTT | Finland | Semi-pilot |
CelloComp | UK | 400 |
Fiber Lean Technologies | UK | 8000 |
InTechFibers | France | 100 kg/day |
SAPPI | Netherland | 8 |
WEIDMANN | Switzerland | 500 |
DKS Co., Ltd. | Japan | 50 |
Daio Paper Corp. | Japan | 100 |
Chuetsu Pulp & Paper Co. Ltd. | Japan | 100 |
Nippon Paper Group | Japan | 500 |
Oji Holdings Corporation | Japan | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djafari Petroudy, S.R.; Chabot, B.; Loranger, E.; Naebe, M.; Shojaeiarani, J.; Gharehkhani, S.; Ahvazi, B.; Hu, J.; Thomas, S. Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies 2021, 14, 6792. https://doi.org/10.3390/en14206792
Djafari Petroudy SR, Chabot B, Loranger E, Naebe M, Shojaeiarani J, Gharehkhani S, Ahvazi B, Hu J, Thomas S. Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies. 2021; 14(20):6792. https://doi.org/10.3390/en14206792
Chicago/Turabian StyleDjafari Petroudy, Seyed Rahman, Bruno Chabot, Eric Loranger, Maryam Naebe, Jamileh Shojaeiarani, Samira Gharehkhani, Behzad Ahvazi, Jinguang Hu, and Sabu Thomas. 2021. "Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review" Energies 14, no. 20: 6792. https://doi.org/10.3390/en14206792
APA StyleDjafari Petroudy, S. R., Chabot, B., Loranger, E., Naebe, M., Shojaeiarani, J., Gharehkhani, S., Ahvazi, B., Hu, J., & Thomas, S. (2021). Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies, 14(20), 6792. https://doi.org/10.3390/en14206792