Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patent Dynamics in the CCMT: An Overview
3.2. Country Specialization in CCMTs
3.3. Climate Change Related Technologies in EU Countries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA (International Energy Agency). World Energy Outlook 2020; IEA: Paris, France, 2020. [Google Scholar]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 200–214. [Google Scholar] [CrossRef]
- EC (European Commission) Communication from the Commission. The European Green Deal. COM (2019)640 2020; European Commission: Bruxelles, Belgium, 2020. [Google Scholar]
- EC (European Commission) Communication from the Commission. Fit for 55: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality. COM (2021)550Final 2021; European Commission: Bruxelles, Belgium, 2021. [Google Scholar]
- Rogge, K.S.; Reichardt, K. Policy mixes for sustainability transitions: An extended concept and framework for analysis. Res. Policy 2016, 45, 1620–1635. [Google Scholar] [CrossRef]
- Crespi, F.; Mazzanti, M.; Managi, S. Green growth, eco-innovation and sustainable transitions. Environ. Econ. Policy Stud. 2016, 18, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.M.; Costantini, V.; Paglialunga, E. Modelling the European Union Sustainability Transition: A Soft-Linking Approach. Sustainability 2021, 13, 6303. [Google Scholar] [CrossRef]
- Keramidas, K.; Diaz Vazquez, A.; Weitzel, M.; Vandyck, T.; Tamba, M.; Tchung-Ming, S.; Soria-Ramirez, A.; Krause, J.; Van Dingenen, R.; Chai, Q.; et al. Global Energy and Climate Outlook 2019: Electrification for the Low-Carbon Transition; JRC119619; Institute for Energy and Transport: Seville, Spain, 2020. [Google Scholar] [CrossRef]
- Tagliapietra, S.; Zachmann, G.; Edenhofer, O.; Glachant, J.M.; Linares, P.; Loeschel, A. The European union energy transition: Key priorities for the next five years. Energy Policy 2019, 132, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Costantini, V.; Crespi, F.; Palma, A. Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies. Res. Policy 2017, 46, 799–819. [Google Scholar] [CrossRef]
- Hoppmann, J.; Peters, M.; Schneider, M.; Hoffmann, V.H. The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry. Res. Policy 2013, 42, 989–1003. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Martini, C.; Pennacchio, L. Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector. Res. Policy 2015, 44, 577–595. [Google Scholar] [CrossRef]
- Kallis, G.; Kostakis, V.; Lange, S.; Muraca, B.; Paulson, S.; Schmelzer, M. Research on degrowth. Annu. Rev. Environ. Resour. 2018, 43, 291–316. [Google Scholar] [CrossRef] [Green Version]
- Speck, S.; Zoboli, R.; Paleari, S.; Marin, G.; Mazzanti, M.; Bassi, A. The Sustainability Transition in Europe in an Age of Demographic and Technological Change. Environmnetal European Agency (EEA) Report No 23/2019. Available online: https://www.eea.europa.eu/publications/sustainability-transition-in-europe (accessed on 21 June 2021).
- Elkerbout, M.; Egenhofer, C.; Núñez Ferrer, J.; Catuti, M.; Kustova, I.; Rizos, V. The European Green Deal after Corona: Implications for EU Climate Policy. CEPS Policy Insights 2020, 1–12. Available online: https://www.sipotra.it/wp-content/uploads/2020/04/The-European-Green-Deal-after-Corona-Implications-for-EU-climate-policy.pdf (accessed on 18 June 2021).
- Sueyoshi, T.; Ryu, Y.; Yun, J.-Y. COVID-19 Response and Prospects of Clean/Sustainable Energy Transition in Industrial Nations: New Environmental Assessment. Energies 2021, 14, 1174. [Google Scholar] [CrossRef]
- Archibugi, D.; Filippetti, A.; Frenz, M. Investment in innovation for European recovery: A public policy priority. Sci. Public Policy 2020, 47, 92–102. [Google Scholar] [CrossRef]
- Archibugi, D.; Mariella, V. Is a European recovery possible without high-tech public corporations? Intereconomics 2021, 56, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Crespi, F.; Caravella, S.; Menghini, M.; Salvatori, C. European Technological Sovereignty: An emerging framework for policy strategy. Intereconomics 2021, 6. in press. [Google Scholar]
- Cerra, R.; Crespi, F. Sovranità Tecnologica: Elementi per Una Strategia Italiana ed Europea; Centro Economia Digitale (CED): Rome, Italy, 2021; Available online: https://www.centroeconomiadigitale.com/wp-content/uploads/2021/03/CED-Sovranita-Tecnologica.pdf (accessed on 3 September 2021).
- Edler, J.; Blind, K.; Frietsch, R.; Kimpeler, S.; Kroll, H.; Lerch, C.; Reiss, T.; Roth, F.; Schubert, T.; Schuler, J.; et al. Technology Sovereignty: From Demand to Concept. Fraunhofer Institute for Systems and Innovation Research Policy Brief No. 02/2020. Available online: https://www.econstor.eu/bitstream/10419/233462/1/policy-brief-02-2020.pdf (accessed on 3 September 2021).
- Bauer, M.; Erixon, F. Europe’s Quest for Technology Sovereignty: Opportunities and Pitfalls. ECIPE Occasional Paper, No. 02/2020. Available online: https://cdn.ecipe.org/wp-content/uploads/2020/06/2020_05_26_Event-Technology-Sovereignty-1.pdf (accessed on 3 September 2021).
- Kelly, E.; Zubascu, F.; Naujokaityte, G.; Moran, N.; Pringle, D.; Wallace, N. What Is ‘Tech Sovereignty’? Science Business Publishing: Brussels, Belgium, 2020; Available online: https://sciencebusiness.net/system/files/reports/2020-TECH-1.pdf (accessed on 3 September 2021).
- EC (European Commission). Decision on European Innovation Council (EIC) Established by the European Commission, under the Horizon Europe Programme (2021-27) C(2021)1510 2021; European Commission: Bruxelles, Belgium, 2021. [Google Scholar]
- Mowery, D.C.; Nelson, R.R.; Martin, B.R. Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won’t work). Res. Policy 2010, 39, 1011–1023. [Google Scholar] [CrossRef]
- Mazzucato, M. From market fixing to market-creating: A new framework for innovation policy. Ind. Innov. 2016, 23, 140–156. [Google Scholar] [CrossRef]
- Albino, V.; Ardito, L.; Dangelico, R.M.; Petruzzelli, A.M. Understanding the development trends of low-carbon energy technologies: A patent analysis. Appl. Energy 2014, 135, 836–854. [Google Scholar] [CrossRef]
- Haščič, I.; Migotto, M. Measuring Environmental Innovation Using Patent Data; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- Angelucci, S.; Hurtado-Albir, F.J.; Volpe, A. Supporting global initiatives on climate change: The EPO’s “Y02-Y04S” tagging scheme. World Pat. Inf. 2020, 54, S85–S92. [Google Scholar] [CrossRef]
- Dernis, H. Nowcasting Patent Indicators; Science and Technology Indicators, Working Paper 2007/3 Statistical Analysis of Science, Technology and Industry; OECD: Paris, France, 2007. [Google Scholar]
- Hidalgo, C.A.; Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Sci. USA 2009, 106, 10570–10575. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, C.; Crespi, F.; Mongeau Ospina, C.A.; Scellato, G. Knowledge composition, Jacobs externalities and innovation performance in European regions. Reg. Stud. 2017, 51, 1708–1720. [Google Scholar] [CrossRef]
- Grupp, H. Foundations of the Economics of Innovation; Edward Elgar Publishing: Cheltenham, UK; Lyme, CN, USA, 1998. [Google Scholar]
- Karvonen, M.; Kapoor, R.; Uusitalo, A.; Ojanen, V. Technology competition in the internal combustion engine waste heat recovery: A patent landscape analysis. J. Clean. Prod. 2016, 112, 3735–3743. [Google Scholar] [CrossRef]
- Walz, R.; Pfaff, M.; Marscheider-Weidemann, F.; Glöser-Chahoud, S. Innovations for reaching the green sustainable development goals–where will they come from? Int. Econ. Econ. Policy 2017, 14, 449–480. [Google Scholar] [CrossRef]
- Urbaniec, M.; Tomala, J.; Martinez, S. Measurements and Trends in Technological Eco-Innovation: Evidence from Environment-Related Patents. Resources 2021, 10, 68. [Google Scholar] [CrossRef]
- Sterlacchini, A. Trends and determinants of energy innovations: Patents, environmental policies and oil prices. J. Econ. Policy Reform 2020, 23, 49–66. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of eco-innovations by type of environmental impact—the role of regulatory push/pull, technology push and market pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Mazzucato, M. Mission-oriented innovation policies: Challenges and opportunities. Ind. Corps. Chang. 2018, 27, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Lema, R.; Fu, X.; Rabellotti, R. Green windows of opportunity: Latecomer development in the age of transformation toward sustainability. Ind. Corp. Chang. 2020, 29, 1193–1209. [Google Scholar] [CrossRef]
- Corrocher, N.; Malerba, F.; Morrison, A. Technological regimes, patent growth, and catching-up in green technologies. Ind. Corp. Chang. 2021, dtab025. [Google Scholar] [CrossRef]
- Dechezleprêtre, A. How to Reverse the Dangerous Decline in Low-Carbon Innovation. Conversation. 2016. Available online: https://theconversation.com/how-to-reverse-the-dangerous-decline-in-low-carbon-innovation-66944 (accessed on 3 September 2021).
- Cornwall, W. Clean Energy Patent Slump in US Stirs Concern. Science. 2017. Available online: https://www.sciencemag.org/news/2017/04/clean-energy-patent-slump-us-stirs-concern (accessed on 27 July 2021).
- Fujii, H.; Managi, S. Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors. Technol. Forecast. Soc. Chang. 2016, 112, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Quitzow, R.; Walz, R.; Köhler, J.; Rennings, K. The concept of “lead markets” revisited: Contribution to environmental innovation theory. Environ. Innov. Soc. Transit. 2014, 10, 4–19. [Google Scholar] [CrossRef]
- WIPO. World Intellectual Property Indicators 2020; World Intellectual Property Organization: Geneva, Switzerland, 2020; Available online: https://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2020.pdf (accessed on 27 July 2021).
- Hansen, U.E.; Fold, N.; Hansen, T. Upgrading to lead firm position via international acquisition: Learning from the global biomass power plant industry. J. Econ. Geogr. 2016, 16, 131–153. [Google Scholar] [CrossRef]
- Tolliver, C.; Fujii, H.; Keeley, A.R.; Managi, S. Green innovation and finance in Asia. Asian Econ. Policy Rev. 2021, 16, 67–87. [Google Scholar] [CrossRef]
- Marku, E.; Zaitsava, M. Smart Grid Domain: Technology structure and innovation trends. Int. J. Econ. Bus. Manag. Res. 2018, 2, 390–440. [Google Scholar]
- OECD. Environmental Policy: Renewable Energy Feed-in Tariffs. OECD Environment Statistics (Database). 2021. Available online: https://doi.org/10.1787/f68de84b-en (accessed on 12 October 2021).
- Holzinger, K.; Knill, C.; Sommerer, T. Environmental policy convergence: The impact of international harmonization, transnational communication, and regulatory competition. Int. Organ. 2018, 62, 553–587. [Google Scholar] [CrossRef] [Green Version]
- Busch, P.O.; Jörgens, H. The international sources of policy convergence: Explaining the spread of environmental policy innovations. J. Eur. Public Policy 2005, 12, 860–884. [Google Scholar] [CrossRef]
- Perruchas, F.; Consoli, D.; Barbieri, N. Specialisation, diversification and the ladder of green technology development. Res. Policy 2020, 49, 103922. [Google Scholar] [CrossRef]
- Montresor, S.; Quatraro, F. Green technologies and Smart Specialisation Strategies: A European patent-based analysis of the intertwining of technological relatedness and key enabling technologies. Reg. Stud. 2020, 54, 1354–1365. [Google Scholar] [CrossRef] [Green Version]
CMMTs Subclasses | Description |
---|---|
Y02A—Adaptation to climate change | CMMT technologies that allow adapting to the adverse effects of climate change in human, industrial (including agriculture and livestock), and economic activities. |
Y02B—Buildings | CMMT technologies related to buildings, e.g., housing, house appliances or related end-user applications. |
Y02C—Capture and storage of GHG | CMMT technologies for capture, storage, sequestration or disposal of greenhouse gases (GHG) included nitrous oxide (N2O), methane (CH4), perfluorocarbons (PFC), hydrofluorocarbons (HFC), or sulfur hexafluoride (SF6). |
Y02D—ICT | CMMT technologies in information and communication technologies (ICT), i.e., information and communication technologies aiming at the reduction in their own energy use. |
Y02E—Energy | CMMT technologies related to energy generation, transmission, or distribution that allow reducing greenhouse gas (GHG) emissions. |
Y02P—Industry and agriculture | CMMT technologies in the production or processing of goods in any kind of industrial processing or production activity including the agri-food industry, agriculture, fishing, ranching, and the like. |
Y02T—Transportation | CMMT technologies related to transportation (road transport, transportation via railways, e.g., energy recovery or reducing air resistance; aeronautics or air transport; maritime or waterways transport). |
Y02W—Waste and wastewater | CMMT technologies related to solid waste management, solid waste management, enabling technologies or technologies with a potential or indirect contribution to greenhouse gas (GHG) emissions mitigation. |
Y04S—Smart grids | Systems integrating technologies related to power network operation, communication, or information technologies for improving the electrical power generation, transmission, distribution, management, or usage. |
Country | Period | Y02–Y04S | CCMT Subclasses | |||||||
---|---|---|---|---|---|---|---|---|---|---|
- | Y02B | Y02C | Y02D | Y02E | Y02P | Y02T | Y02W | Y04S | ||
JP | 2000–2009 | 38.0 | 33.8 | 23.8 | 29.3 | 39.4 | 32.0 | 47.6 | 32.3 | 31.9 |
2010–2016 | 40.4 | 39.4 | 32.3 | 25.1 | 40.1 | 33.2 | 53.6 | 25.1 | 49.7 | |
EU27 | 2000–2009 | 24.5 | 27.5 | 26.2 | 14.9 | 21.4 | 27.5 | 26.3 | 26.0 | 19.1 |
2010–2016 | 21.4 | 22.6 | 19.4 | 9.3 | 20.6 | 25.1 | 21.0 | 30.2 | 11.1 | |
US | 2000–2009 | 24.3 | 23.7 | 33.6 | 38.1 | 23.4 | 27.3 | 18.8 | 23.1 | 32.1 |
2010–2016 | 19.5 | 18.4 | 29.2 | 39.7 | 17.0 | 22.0 | 14.6 | 24.5 | 23.6 | |
DE | 2000–2009 | 12.2 | 12.6 | 9.7 | 3.9 | 10.8 | 13.2 | 14.9 | 9.4 | 8.51 |
2010–2016 | 9.3 | 7.9 | 7.7 | 2.7 | 9.6 | 11.0 | 9.2 | 9.3 | 3.9 | |
KR | 2000–2009 | 3.7 | 4.7 | 1.5 | 6.2 | 5.6 | 2.8 | 1.1 | 2.5 | 2.2 |
2010–2016 | 7.5 | 5.2 | 1.9 | 6.7 | 11.6 | 6.2 | 4.3 | 2.4 | 4.4 | |
FR | 2000–2009 | 5.3 | 3.4 | 9.0 | 2.4 | 4.5 | 4.8 | 7.1 | 5.3 | 4.9 |
2010–2016 | 5.6 | 3.9 | 4.9 | 1.8 | 5.2 | 5.4 | 7.4 | 7.5 | 2.4 | |
UK | 2000–2009 | 3.0 | 2.5 | 5.6 | 4.3 | 2.9 | 3.4 | 2.3 | 3.4 | 3.1 |
2010–2016 | 2.8 | 2.5 | 3.3 | 3.0 | 2.8 | 2.8 | 2.5 | 3.1 | 2.1 | |
CN | 2000–2009 | 0.6 | 0.9 | 0.3 | 1.5 | 0.7 | 0.6 | 0.3 | 1.1 | 1.2 |
2010–2016 | 2.6 | 3.6 | 1.2 | 9.6 | 2.1 | 2.8 | 0.9 | 3.1 | 2.1 | |
NL | 2000–2009 | 1.7 | 6.5 | 2.9 | 2.6 | 1.2 | 2.0 | 0.4 | 1.5 | 1.0 |
2010–2016 | 1.4 | 6.0 | 1.3 | 0.9 | 1.0 | 1.7 | 0.3 | 1.4 | 1.5 | |
SE | 2000–2009 | 1.2 | 1.0 | 1.1 | 2.6 | 1.0 | 0.9 | 1.4 | 1.2 | 1.3 |
2010–2016 | 1.1 | 0.7 | 1.0 | 2.0 | 0.7 | 1.1 | 1.4 | 1.8 | 0.5 | |
CH | 2000–2009 | 1.0 | 1.0 | 1.6 | 0.5 | 1.1 | 1.4 | 0.7 | 1.7 | 2.6 |
2010–2016 | 1.0 | 0.9 | 1.7 | 0.2 | 1.1 | 1.4 | 0.6 | 1.9 | 0.7 |
Country | Period | Y02–Y04S | CCMTs Subclasses | |||||||
---|---|---|---|---|---|---|---|---|---|---|
- | - | Y02B | Y02C | Y02D | Y02E | Y02P | Y02T | Y02W | Y04S | |
KR | 2000–2009 | 3.4 | 46.4 | −38.0 | 63.8 | 34.0 | −9.4 | −79.8 | −3.9 | 20.4 |
2010–2016 | 23.3 | 17.9 | −58.1 | 40.7 | 75.3 | 34.6 | −4.5 | −51.7 | 1.4 | |
JP | 2000–2009 | 8.3 | 11.0 | −21.7 | −3.6 | 26.6 | 5.2 | 40.8 | 6.1 | 2.8 |
2010–2016 | 7.5 | 15.1 | −4.8 | −28.3 | 17.0 | −1.8 | 43.0 | −29.0 | 35.2 | |
FR | 2000–2009 | 0.4 | −39.1 | 52.8 | −51.4 | −14.9 | −3.0 | 21.9 | 2.3 | 12.3 |
2010–2016 | 7.0 | −25.4 | −4.4 | −75.1 | 6.8 | 10.8 | 39.0 | 38.8 | −61.0 | |
DE | 2000–2009 | 0.5 | 6.1 | −20.2 | −76.7 | −7.0 | 10.7 | 25.0 | −22.4 | −27.4 |
2010–2016 | −0.4 | −18.8 | −21.7 | −84.6 | 2.0 | 15.2 | −3.1 | 0.4 | −68.3 | |
EU27 | 2000–2009 | −0.9 | 4.7 | 20.6 | −13.3 | −9.8 | 23.5 | −27.5 | 31.6 | 20.4 |
2010–2016 | −7.3 | 8.8 | 16.8 | −30.3 | −8.1 | 22.1 | −23.3 | 41.8 | −28.0 | |
UK | 2000–2009 | −10.0 | −38.1 | 36.3 | 12.5 | −24.9 | −11.5 | −46.0 | −12.4 | −24.8 |
2010–2016 | −6.3 | −27.3 | −1.4 | −7.2 | −16.4 | −13.8 | −26.0 | −5.2 | −36.9 | |
SE | 2000–2009 | −10.0 | −38.1 | 36.3 | 12.5 | −24.9 | −11.5 | −46.0 | −12.4 | −24.8 |
2010–2016 | −6.33 | −27.3 | −1.4 | −7.2 | −16.4 | −13.8 | −26.0 | −5.2 | −36.9 | |
CN | 2000–2009 | −9.9 | −39.5 | −1.2 | 45.8 | −34.6 | −47.2 | −9.2 | −19.5 | 38.3 |
2010–2016 | −9.0 | −37.2 | −12.6 | 41.5 | −58.4 | −14.8 | 8.6 | 3.0 | −60.1 | |
US | 2000–2009 | −3.4 | 35.4 | 5.4 | 48.3 | 4.1 | −14.9 | −62.9 | 58.6 | 79.7 |
2010–2016 | −9.5 | 16.5 | −59.8 | 79.3 | −29.4 | −4.4 | −84.3 | 5.4 | −37.1 | |
NL | 2000–2009 | −6.6 | −21.6 | 11.5 | 22.2 | −23.9 | −9.1 | −42.3 | −25.8 | 4.8 |
2010–2016 | −11.5 | −31.4 | 14.0 | 41.8 | −37.9 | −14.3 | −50.1 | −3.7 | −6.6 | |
CH | 2000–2009 | −17.4 | 77.9 | 20.2 | 10.3 | −51.0 | −12.9 | −94.5 | −37.7 | −21.6 |
2010–2016 | −14.5 | 80.8 | −20.1 | −58.5 | −59.3 | −13.0 | −93.7 | −27.3 | −19.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caravella, S.; Costantini, V.; Crespi, F. Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies. Energies 2021, 14, 6854. https://doi.org/10.3390/en14206854
Caravella S, Costantini V, Crespi F. Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies. Energies. 2021; 14(20):6854. https://doi.org/10.3390/en14206854
Chicago/Turabian StyleCaravella, Serenella, Valeria Costantini, and Francesco Crespi. 2021. "Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies" Energies 14, no. 20: 6854. https://doi.org/10.3390/en14206854
APA StyleCaravella, S., Costantini, V., & Crespi, F. (2021). Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies. Energies, 14(20), 6854. https://doi.org/10.3390/en14206854