Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Euler Angles (Yaw, Pitch and Roll)
Kinematic Differential Equations
2.2. Dynamical Modeling
2.2.1. Inertia Matrices of the Satellite and the Fluid Rings
2.2.2. Angular Velocity
2.2.3. Euler’s Rotational Equations of Motion
2.3. Port-Hamiltonian Representation
2.3.1. Port-Hamiltonian Systems
2.3.2. Port-Hamiltonian Model for the Satellite-Fluid Rings System
3. Results
3.1. Comparing the Euler Equations and the Port-Hamiltonian System
3.2. Fluid Rings’ Torques from an Experimental Prototype
- A water pump model JT-750D4 12V
- A water flow sensor model YF-201 with maximum capacity of measurement of 720
- An Arduino® Uno microcontroller
- A laptop computer
- A 3/4″ diameter water hose
- A laboratory DC power supply
- An ammeter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Inertia Matrix of the Fluid Rings
References
- Froelich, R.; Papapoff, H. Reaction wheel attitude control for space vehicles. IRE Trans. Autom. Control 1959, 4, 139–149. [Google Scholar] [CrossRef]
- Dertouzos, M.; Roberge, J. High-Capacity Reaction-Wheel Attitude Control. IEEE Trans. Appl. Ind. 1964, 83, 99–104. [Google Scholar] [CrossRef]
- Macala, G.A. Design of the reaction wheel attitude control system for the Cassini spacecraft. In Proceedings of the 12th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX, USA, 27–30 January 2002; p. 0122. [Google Scholar]
- Ismail, Z.; Varatharajoo, R. A study of reaction wheel configurations for a 3-axis satellite attitude control. Adv. Space Res. 2010, 45, 750–759. [Google Scholar] [CrossRef]
- Marsh, H.C.; Karpenko, M.; Gong, Q. Relationships between maneuver time and energy for reaction wheel attitude control. J. Guid. Control Dyn. 2018, 41, 335–348. [Google Scholar] [CrossRef]
- King, J.T. Increasing agility in orthogonal reaction wheel attitude control systems. Acta Astronaut. 2020, 177, 673–683. [Google Scholar] [CrossRef]
- Singh, S.N.; Bossart, T.C. Exact feedback linearization and control of space station using CMG. IEEE Trans. Autom. Control 1993, 38, 184–187. [Google Scholar] [CrossRef]
- Hoelscher, B. Optimal open-loop and feedback control using single gimbal control moment gyroscopes. J. Astronaut. Sci. 1994, 42, 189–206. [Google Scholar]
- MacKunis, W.; Dupree, K.; Fitz-Coy, N.; Dixon, W. Adaptive satellite attitude control in the presence of inertia and CMG gimbal friction uncertainties. J. Astronaut. Sci. 2008, 56, 121–134. [Google Scholar] [CrossRef]
- MacKunis, W.; Leve, F.; Patre, P.; Fitz-Coy, N.; Dixon, W. Adaptive neural network-based satellite attitude control in the presence of CMG uncertainty. Aerosp. Sci. Technol. 2016, 54, 218–228. [Google Scholar] [CrossRef]
- Wiśniewski, R.; Blanke, M. Fully magnetic attitude control for spacecraft subject to gravity gradient. Automatica 1999, 35, 1201–1214. [Google Scholar] [CrossRef]
- Santoni, F.; Zelli, M. Passive magnetic attitude stabilization of the UNISAT-4 microsatellite. Acta Astronaut. 2009, 65, 792–803. [Google Scholar] [CrossRef]
- Desouky, M.A.; Abdelkhalik, O. Improved spacecraft magnetic attitude maneuvering. J. Spacecr. Rocket. 2019, 56, 1611–1623. [Google Scholar] [CrossRef]
- Maynard, R.S. Fluidic Momentum Controller. US Patent 4,776,541, 11 October 1988. [Google Scholar]
- Varatharajoo, R.; Kahle, R.; Fasoulas, S. Approach for combining spacecraft attitude and thermal control systems. J. Spacecr. Rocket. 2003, 40, 657–664. [Google Scholar] [CrossRef]
- Shan, X.; Chen, X.; Geng, Y.; Zhang, S. Small satellite attitude control based on mechanically-pumped fluid loops. In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 21–23 June 2011; pp. 149–153. [Google Scholar]
- Kelly, A.; Mc Chesney, C.; Smith, P.; Waltena, S. A Performance Test of a Fluidic Momentum Controller in Three Axes. In NASA Report; The University of Texas at Austin: Austin, TX, USA, 2004. [Google Scholar]
- Kumar, K. Satellite attitude stabilization using fluid rings. Acta Mech. 2009, 208, 117–131. [Google Scholar] [CrossRef]
- Nobari, N.; Misra, A. Satellite attitude stabilization using four fluid rings in a pyramidal configuration. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, ON, Canada, 2–5 August 2010; p. 7652. [Google Scholar]
- Nobari, N.A.; Misra, A.K. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring. Acta Astronaut. 2014, 94, 470–479. [Google Scholar] [CrossRef]
- Tayebi, J.; Soleymani, A. A comparative study of CMG and FMC actuators for nano satellite attitude control system-pyramidal configuration. In Proceedings of the 2015 7th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 16–19 June 2015; pp. 359–365. [Google Scholar]
- Akbaritabar, S.; Esmaelzadeh, R.; Zardashti, R. Comparing fluid ring and CMG servomechanisms for active control of rigid satellites. Aircr. Eng. Aerosp. Technol. 2018, 90, 896–905. [Google Scholar] [CrossRef]
- Maschke, B.M.; van der Schaft, A.J. Port-controlled Hamiltonian systems: Modelling origins and systemtheoretic properties. In Nonlinear Control Systems Design 1992; Elsevier: Amsterdam, The Netherlands, 1993; pp. 359–365. [Google Scholar]
- Ortega, R.; Van Der Schaft, A.; Maschke, B.; Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 2002, 38, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Cheng, D.; Lu, Q.; Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 2002, 38, 527–534. [Google Scholar] [CrossRef]
- Xi, Z. Adaptive stabilization of generalized Hamiltonian systems with dissipation and its applications to power systems. Int. J. Syst. Sci. 2002, 33, 839–846. [Google Scholar] [CrossRef]
- Wassink, M.; Carloni, R.; Stramigioli, S. Port-Hamiltonian analysis of a novel robotic finger concept for minimal actuation variable impedance grasping. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 771–776. [Google Scholar]
- Yu, H.; Yu, J.; Liu, J.; Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn. 2013, 72, 49–59. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H.; Yu, J. Hybrid tracking control of 2-DOF SCARA robot via port-controlled hamiltonian and backstepping. IEEE Access 2018, 6, 17354–17360. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, H.; Yu, J.; Liu, X.; Wu, H. Port-controlled Hamiltonian and sliding mode control of gantry robot based on induction motor drives. IEEE Access 2018, 6, 43840–43849. [Google Scholar] [CrossRef]
- Beattie, C.A.; Mehrmann, V.; Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica 2019, 100, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Battin, R.H. An Introduction to the Mathematics and Methods of Astrodynamics, Revised ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1999. [Google Scholar]
- Junkins, J.L.; Schaub, H. Analytical Mechanics of Space Systems; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009. [Google Scholar]
- Nelson, R.C. Flight Stability and Automatic Control; WCB/McGraw Hill: New York, NY, USA, 1998; Volume 2. [Google Scholar]
- Junkins, J.L.; Turner, J.D. Optimal Spacecraft Rotational Maneuvers; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Van Der Schaft, A. Port-Hamiltonian systems: An introductory survey. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 27–30 August 2006; Volume 3, pp. 1339–1365. [Google Scholar]
- Duindam, V.; Macchelli, A.; Stramigioli, S.; Bruyninckx, H. Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Van Der Schaft, A.; Jeltsema, D. Port-Hamiltonian systems theory: An introductory overview. Found. Trends Syst. Control 2014, 1, 173–378. [Google Scholar] [CrossRef]
- Taylor, J.R. Classical Mechanics; University Science Books: Herndon, VA, USA, 2005. [Google Scholar]
- Yunus, A.C. Fluid Mechanics: Fundamentals And Applications (Si Units); Tata McGraw Hill Education Private Limited: New York, NY, USA, 2010. [Google Scholar]
- Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. [Google Scholar] [CrossRef]
- Shao, C.; Zhao, Y. Numerical study of the dimensionless characteristics and modeling experiment of a molten salt pump that transports viscous fluids. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 2131–2153. [Google Scholar] [CrossRef]
- Freund, R.J.; Wilson, W.J.; Sa, P. Regression Analysis; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Mechanics: Volume 1; Butterworth-Heinemann: Oxford, UK, 1976. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat; Basic Books: New York, NY, USA, 2011. [Google Scholar]
Parameter | Value | Units |
---|---|---|
, for | 0.0061 | kg·m2 |
, for | 0.0030 | kg·m2 |
0.4254 | kg·m2 | |
0.5054 | kg·m2 | |
0.4254 | kg·m2 | |
G | 6.6740 | m3·kg−1·s−2 |
5.9722 | kg | |
42,164,000 | m | |
0.03 | ||
0.02 | ||
0.01 |
Voltage (V) | Volume Flow Rate (m3/s) | Electric Current (A) |
---|---|---|
6.0 | 0.0000722 | 0.360 |
6.5 | 0.0000772 | 0.400 |
7.0 | 0.0000822 | 0.457 |
7.5 | 0.0000872 | 0.503 |
8.0 | 0.0000922 | 0.543 |
8.5 | 0.0000964 | 0.580 |
9.0 | 0.0001014 | 0.630 |
9.5 | 0.0001047 | 0.667 |
10.0 | 0.0001097 | 0.710 |
10.5 | 0.0001147 | 0.750 |
11.0 | 0.0001172 | 0.787 |
11.5 | 0.0001214 | 0.823 |
12.0 | 0.0001247 | 0.867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaraz Tapia, J.C.; Castañeda, C.E.; Vargas-Rodríguez, H. Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System. Energies 2021, 14, 6906. https://doi.org/10.3390/en14216906
Alcaraz Tapia JC, Castañeda CE, Vargas-Rodríguez H. Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System. Energies. 2021; 14(21):6906. https://doi.org/10.3390/en14216906
Chicago/Turabian StyleAlcaraz Tapia, Juan Cristobal, Carlos E. Castañeda, and Héctor Vargas-Rodríguez. 2021. "Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System" Energies 14, no. 21: 6906. https://doi.org/10.3390/en14216906
APA StyleAlcaraz Tapia, J. C., Castañeda, C. E., & Vargas-Rodríguez, H. (2021). Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System. Energies, 14(21), 6906. https://doi.org/10.3390/en14216906