Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid
Abstract
:1. Introduction
2. Model Description
- The flow is laminar, two-dimensional, steady, and incompressible.
- The Boussinesq approximation is employed to settle that the nanofluid’s thermo-physical properties remain constant.
- A thermal equilibrium model was applied between nanofluid and porous medium.
2.1. Mathematical Formulation
2.2. Boundary Conditions
2.3. Numerical Method
2.4. Validation Tests
3. Results and Discussion
4. Conclusions
- The flow and temperature were strongly affected as the shape of the inner superellipse grew larger.
- The average Nusselt number grew sharply with increasing nanoparticle volume fraction, which means that introducing Cu-water nanoparticles into the base fluid increased the heat transfer coefficient.
- The buoyancy force, and hence the movement of the nanofluid, increased as the Rayleigh number grew, and an inverse relationship existed between the temperature and Rayleigh number in the cavity’s core.
- As decreased, the porous resistance increased, limiting the nanofluid’s movement within the porous layers. The mean was shown to decrease as the porous resistance increased (.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Rayleigh number | ||
specific heat (J/g·C) | ||
Darcy number | ||
average particle size | ||
Forchheimer coefficient | ||
gravitational acceleration | ||
H | dimensionless height of porous layer | |
dimensional height of porous layer | ||
permeability (m2) | ||
thermal conductivity (W/m·K) | ||
thermal conductivity of pure fluid | ||
thermal conductivity of porous matrix | ||
thermal conductivity of nanofluid | ||
thermal conductivity of dispersed nanoparticles | ||
Ergun’s constant | ||
average particle size of the bed | ||
Nusselt number | ||
average Nusselt number | ||
pressure (N/m2) | ||
Prandtl number | ||
cavity length (m) | ||
temperature (K) | ||
dimension velocity components (m/s) | ||
dimensionless velocity components | ||
Cartesian coordinates (m) | ||
dimensionless coordinates | ||
Greek symbols | ||
viscosity (kg/m·s) | ||
thermal diffusivity | ||
thermal expansion coefficient | ||
volumetric thermal expansion | ||
porosity | ||
solid volume fraction | ||
kinematic viscosity (m2/s) | ||
density (kg/m3) | ||
stream function | ||
dimensionless temperature | ||
Subscripts | ||
fluid | ||
nanofluid | ||
porous medium | ||
c | cold | |
h | hot |
References
- Chen, Z.; Huan, G.; Ma, Y. Computational methods for multiphase flows in porous media. In Society for Industrial and Applied Mathematics; SIMA Publication: Philadelphia, PA, USA, 2006. [Google Scholar]
- Marcelo, J.S.d.L. Turbulence in Porous Media: Modeling and Applications; Elsevier: Boston, MA, USA, 2012. [Google Scholar]
- Donald, A.N.; Adrian, B. Convection in Porous Media, 4th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Diersch, H.-J.G.A. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin, Germany, 2014. [Google Scholar]
- Alloui, Z.; Rebhi, R.; Mamou, M.; Vasseur, P. Effects of quadratic drag on natural convection in a tilted porous layer with uniform heat flux from the side. Int. J. Heat Mass Transf. 2017, 115, 314–325. [Google Scholar] [CrossRef]
- Dixon, J.; Kulacki, F. Mixed convection in fluid superposed porous layers. Part 2: Experiments. Int. J. Heat Mass Transf. 2017, 109, 1301–1306. [Google Scholar] [CrossRef]
- Astanina, M.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 2018, 136, 493–502. [Google Scholar] [CrossRef]
- Cho, C.-C.; Yau, H.-T.; Chen, C.-K. Enhancement of natural convection heat transfer in a U-shaped cavity filled with Al2O3-water nanofluid. Therm. Sci. 2012, 16, 1317–1323. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Yan, W.-M.; Aghaei, A. Natural convection in T-shaped cavities filled with water-based suspensions of COOH-functionalized multi walled carbon nanotubes. Int. J. Mech. Sci. 2017, 121, 21–32. [Google Scholar] [CrossRef]
- Bhowmick, S.; Xu, F.; Zhang, X.; Saha, S.C. Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water. Int. J. Therm. Sci. 2018, 128, 59–69. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Pereira, M.S.; Feijoó, B.C.; Rocha, L.A.O.; Isoldi, L.A.; Santos, E.D. Geometric Evaluation of T And H-Shaped Cavities Inserted in A Solid With Heat Generation Applying Constructal Design. Rev. Eng. Térmica 2017, 16, 89–95. [Google Scholar] [CrossRef]
- Mikhail, A.S.; Ioan, P.; Baytas, A.C. Non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2524–2544. [Google Scholar]
- Sreedevi, P.; Reddy, P.S. Effect of magnetic field and thermal radiation on natural convection in a square cavity filled with TiO2 nanoparticles using Tiwari-Das nanofluid model. Alex. Eng. J. 2021, in press. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Yang, Z. Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity’s Aspect Ratio. J. Taiwan Inst. Chem. Eng. 2018, 93, 263–276. [Google Scholar] [CrossRef]
- Rahimi, A.; Sepehr, M.; Lariche, M.J.; Mesbah, M.; Kasaeipoor, A.; Malekshah, E.H. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method- Experimental thermo-physical properties of nanofluid. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 97, 347–362. [Google Scholar] [CrossRef]
- Izadi, M.; Mohebbi, R.; Karimi, D.; Sheremet, M.A. Numerical Simulation of Natural Convection Heat Transfer inside a Shaped Cavity Filled by a MWCNT-Fe3O4/Water Hybrid Nanofluids using LBM. Chem. Eng. Process. Process. Intensif. 2018, 125, 108467. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Mansour, M.; Alwatban, A.M.; Aly, A. Finite element simulation for MHD ferro-convective flow in an inclined double-lid driven L-shaped enclosure with heated corners. Alex. Eng. J. 2020, 59, 217–226. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Pop, I. Natural Convection in a Square Porous Cavity with Sinusoidal Temperature Distributions on Both Side Walls Filled with a Nanofluid: Buongiorno’s Mathematical Model. Transp. Porous Media 2014, 105, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Boulahia, Z.; Wakif, A.; Sehaqui, R. Modeling of Free Convection Heat Transfer Enhancement Utilizing Nanofluid Inside A Wavy Wal Enclosure with A Pair Of Hot And Cold Cylinders. Front. Heat Mass Transf. 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.D.V. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Szewc, K.; Pozorski, J.; Tanière, A. Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation. Int. J. Heat Mass Transf. 2011, 54, 4807–4816. [Google Scholar] [CrossRef]
- Srinivasacharya, D.; Ramreddy, C.; Naveen, P. Effects of nonlinear Boussinesq approximation and double dispersion on a micropolar fluid flow under convective thermal condition. Heat Transf. Asian Res. 2018, 48. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.E.; Alrowaili, D.; Mohamed, E.M.; Aly, A.M. Nanofluid Flows within Porous Enclosures Using Non-Linear Boussinesq Approximation. Comput. Mater. Contin. 2021, 66, 3195–3213. [Google Scholar] [CrossRef]
- Hajipour, M.; Dehkordi, A.M. Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int. J. Therm. Sci. 2012, 55, 103–113. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Al-Nimr, M.A.; Pop, I.; Sahin, A.Z.; Wongwises, S. A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Bourantas, G.; Skouras, E.; Loukopoulos, V.; Burganos, V. Heat transfer and natural convection of nanofluids in porous media. Eur. J. Mech. B/Fluids 2014, 43, 45–56. [Google Scholar] [CrossRef]
- Sheremet, M.; Groşan, T.; Pop, I. Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur. J. Mech. B/Fluids 2015, 53, 241–250. [Google Scholar] [CrossRef]
- Jmai, R.; Ben-Beya, B.; Lili, T. Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices Microstruct. 2013, 53, 130–154. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Ismael, M. Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled with a Nanofluid. Numer. Heat Transf. Part. A Appl. 2014, 65, 1089–1113. [Google Scholar] [CrossRef]
- Al-Zamily, A.M.J. Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation. Int. J. Heat Mass Transf. 2017, 106, 1218–1231. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, M.I.; Hayat, T.; Javed, M.F.; Alsaedi, A. Mixed convective non-linear radiative flow with TiO2-Cu-water hybrid nanomaterials and induced magnetic field. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2754–2774. [Google Scholar] [CrossRef]
- Sparrow, E.M.; Chrysler, G.M.; Azevedo, L.F. Observed Flow Reversals and Measured-Predicted Nusselt Numbers for Natural Convection in a One-Sided Heated Vertical Channel. J. Heat Transf. 1984, 106, 325–332. [Google Scholar] [CrossRef]
- Stefanizzi, P.; Lippolis, A.; Liuzzi, S. Experimental and Numerical Analysis of Heat Transfer in The Cavities of Hollow Blocks. Int. J. Heat Technol. 2013, 31, 149–154. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Yang, Y. Heat Transfer Coefficient Estimation and Performance Evaluation of Shell and Tube Heat Exchanger Using Flue Gas. Processes 2021, 9, 939. [Google Scholar] [CrossRef]
- Kladias, N.; Prasad, V. Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Transf. 1991, 5, 560–576. [Google Scholar] [CrossRef]
- Alzahrany, M.; Kiwan, S. Mixed Convection Heat Transfer in the Annulus between Two Concentric Vertical Cylinders Using Porous Layers. Transp. Porous Media 2009, 76, 391–405. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Aly, A.; Lee, S.-W. Natural Convection in a Non-Darcy Porous Cavity Filled with Cu–Water Nanofluid Using the Characteristic-Based Split Procedure in Finite-Element Method. Numer. Heat Transf. Part. A Appl. 2014, 67, 224–247. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.-D.; Zhao, F.-Y.; Liu, D.; Wang, H.-Q. Thermal driven flows inside a square enclosure saturated with nanofluids: Convection heat functions and transfer rate revisions from a homogenous model. Numer. Heat Transf. Part. B Fundam. 2019, 75, 265–288. [Google Scholar] [CrossRef]
- Ho, C.-J.; Huang, C.-Y.; Lai, C.-M. Heat Transfer by Natural Convection in a Square Enclosure Containing PCM Suspensions. Energies 2021, 14, 2857. [Google Scholar] [CrossRef]
- Nithiarasu, P.; Seetharamu, K.; Sundararajan, T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 1997, 40, 3955–3967. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1904; Volume 1. [Google Scholar]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
- Beckermann, C.; Ramadhyani, S.; Viskanta, R. Natural Convection Flow and Heat Transfer Between a Fluid Layer and a Porous Layer Inside a Rectangular Enclosure. J. Heat Transf. 1987, 109, 363–370. [Google Scholar] [CrossRef]
- Kim, B.; Lee, D.; Ha, M.; Yoon, H. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 2008, 51, 1888–1906. [Google Scholar] [CrossRef]
- Ghazvini, M.; Shokouhmand, H. Investigation of a nanofluid-cooled microchannel heat sink using Fin and porous media approaches. Energy Convers. Manag. 2009, 50, 2373–2380. [Google Scholar] [CrossRef]
- Muthtamilselvan, M.; Kandaswamy, P.; Lee, J. Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1501–1510. [Google Scholar] [CrossRef]
H2O | 997.1 | 4179 | 0.613 | 21 10−5 |
Cu | 8933 | 385 | 401 | 1.67 10−5 |
Grid | 41 × 41 | ||||
---|---|---|---|---|---|
2.620308 | 2.647514 | 2.998836 | 3.103110 | 3.253419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsedais, N. Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid. Energies 2021, 14, 6952. https://doi.org/10.3390/en14216952
Alsedais N. Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid. Energies. 2021; 14(21):6952. https://doi.org/10.3390/en14216952
Chicago/Turabian StyleAlsedais, Noura. 2021. "Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid" Energies 14, no. 21: 6952. https://doi.org/10.3390/en14216952
APA StyleAlsedais, N. (2021). Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid. Energies, 14(21), 6952. https://doi.org/10.3390/en14216952