An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM
Abstract
:1. Introduction
2. Relation between ESS and Carbon Emission
3. Applications and Technologies of ESS in Electric Power System
4. Challenges of DNS
4.1. PQ Issues and the Challenge of ESSs
4.1.1. Voltage Sag
4.1.2. Source of Voltage Sag
4.1.3. Effect of the Voltage Sags
4.2. Change on DNS Fault Level
4.2.1. Power Converters
4.2.2. Power Transformer
4.2.3. Conventional Energy Systems (CES)
4.2.4. Voltage Stability
4.2.5. Cables and Distribution Lines
5. Benefits of HFC in DNS
6. Modeling
6.1. Modeling of D-STATCOM
6.2. The System of HFC
7. Control Techniques of HFC D-STATCOM
7.1. P-I Controller
7.2. Takagi–Sugeno Fuzzy Inference System
- Rule 1: If is and is ; then =
- Rule 2: If is and is ; then =
8. Simulation Parameters
9. Result of Simulation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khayrullina, A.G.; Blinov, D.; Borzenko, V. Novel kW scale hydrogen energy storage system utilizing fuel cell exhaust air for hydrogen desorption process from metal hydride reactor. Energy 2019, 183, 1244–1252. [Google Scholar] [CrossRef]
- Peker, M.; Kocaman, A.S.; Kara, B.Y. Benefits of transmission switching and energy storage in power systems with high renewable energy penetration. Appl. Energy 2018, 228, 1182–1197. [Google Scholar] [CrossRef]
- Bareiß, K.; de la Rúa, C.; Möckl, M.; Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 2019, 237, 862–872. [Google Scholar] [CrossRef]
- Shulga, R.; Putilova, I. Multi-agent direct current systems using renewable energy sources and hydrogen fuel cells. Int. J. Hydrog. Energy 2020, 45, 6982–6993. [Google Scholar] [CrossRef]
- Koponen, J.; Ruuskanen, V.; Hehemann, M.; Rauls, E.; Kosonen, A.; Ahola, J.; Stolten, D. Effect of power quality on the design of proton exchange membrane water electrolysis systems. Appl. Energy 2020, 279, 115791. [Google Scholar] [CrossRef]
- Khaleel, M.M.; Adzman, M.R.; Zali, S.M.; Graisa, M.M. A Review of Fuel Cell to Distribution Network Interface Using D-FACTS: Technical Challenges and Interconnection Trends. Int. J. Electr. Electron. Eng. Telecommun. 2021, 10, 319–332. [Google Scholar] [CrossRef]
- Hannan, M.; Lipu, M.H.; Ker, P.J.; Begum, R.; Agelidis, V.G.; Blaabjerg, F. Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Appl. Energy 2019, 251, 113404. [Google Scholar] [CrossRef]
- Bravo, R.; Ortiz, C.; Chacartegui, R.; Friedrich, D. Hybrid solar power plant with thermochemical energy storage: A multi-objective operational optimisation. Energy Convers. Manag. 2020, 205, 112421. [Google Scholar] [CrossRef]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid energy storage system for microgrids applications: A review. J. Energy Storage 2019, 21, 543–570. [Google Scholar] [CrossRef]
- Cheng, M.; Sami, S.S.; Wu, J. Benefits of using virtual energy storage system for power system frequency response. Appl. Energy 2017, 194, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Das, C.K.; Bass, O.; Mahmoud, T.S.; Kothapalli, G.; Mousavi, N.; Habibi, D.; Masoum, M.A. Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks. Appl. Energy 2019, 252, 113468. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Inci, M.; Türksoy, Ö. Review of fuel cells to grid interface: Configurations, technical challenges and trends. J. Clean. Prod. 2019, 213, 1353–1370. [Google Scholar] [CrossRef]
- Alhassan, A.; Zhang, X.; Shen, H.; Xu, H. Power transmission line inspection robots: A review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 2020, 118, 105862. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Z.; Li, C.; He, Q.; Ma, Y.; Guo, C. Numerical investigation of cycle performance in compressed air energy storage in aquifers. Appl. Energy 2020, 269, 115044. [Google Scholar] [CrossRef]
- Gupta, R.; Soini, M.C.; Patel, M.K.; Parra, D. Levelized cost of solar photovoltaics and wind supported by storage technologies to supply firm electricity. J. Energy Storage 2020, 27, 101027. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D. Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach. Ain Shams Eng. J. 2019, 10, 369–378. [Google Scholar] [CrossRef]
- Mousavi G, S.M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustain. Energy Rev. 2017, 67, 477–490. [Google Scholar] [CrossRef]
- Gambôa, P.; Silva, J.F.; Pinto, S.; Margato, E. Input–Output Linearization and PI controllers for AC–AC matrix converter based Dynamic Voltage Restorers with Flywheel Energy Storage: A comparison. Electr. Power Syst. Res. 2019, 169, 214–228. [Google Scholar] [CrossRef]
- Eglitis, R.I.; Borstel, G. Towards a practical rechargeable 5 V Li ion battery. Phys. Status Solidi Appl. Mater. Sci. 2005, 202, R13–R15. [Google Scholar] [CrossRef]
- Eglitis, R. Ab initio calculations of Li2(Co, Mn)O8 solid solutions for rechargeable batteries. Int. J. Mod. Phys. B 2019, 33, 1–8. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D. Dynamic modeling and simulation of a concentrating solar power plant integrated with a thermochemical energy storage system. J. Energy Storage 2020, 28, 101164. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Shahnia, F.; Ami, S.M.; Ghosh, A. Circulating the reverse flowing surplus power generated by single-phase DERs among the three phases of the distribution lines. Int. J. Electr. Power Energy Syst. 2016, 76, 90–106. [Google Scholar] [CrossRef]
- Rohouma, W.; Balog, R.S.; Peerzada, A.A.; Begovic, M.M. D-STATCOM for harmonic mitigation in low voltage distribution network with high penetration of nonlinear loads. Renew. Energy 2020, 145, 1449–1464. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Leborgne, R.C. Improved DR and CBM methods for finding relative location of voltage sag source at the PCC of distributed energy resources. Int. J. Electr. Power Energy Syst. 2020, 117, 105664. [Google Scholar] [CrossRef]
- Rajarajan, R.; Prakash, R. A reformed adaptive frequency passiveness control for unified power quality compensator with model parameter ability to improve power quality. Microprocess. Microsyst. 2020, 73, 102984. [Google Scholar] [CrossRef]
- Choi, W.; Lee, W.; Han, D.; Sarlioglu, B. New Configuration of Multifunctional Grid-Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality. IEEE Trans. Ind. Appl. 2018, 54, 6374–6382. [Google Scholar] [CrossRef]
- Al Hosani, K.; Nguyen, T.H.; Al Sayari, N. An improved control strategy of 3P4W DVR systems under unbalanced and distorted voltage conditions. Int. J. Electr. Power Energy Syst. 2018, 98, 233–242. [Google Scholar] [CrossRef]
- International Energy Agency. Statistics Report CO2 Emissions from Fuel Combustion; IEA: Paris, France, 2020. [Google Scholar]
- Liu, J.; Hu, C.; Kimber, A.; Wang, Z. Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications. J. Energy Storage 2020, 32, 101731. [Google Scholar] [CrossRef]
- Ye, J.; Gooi, H.B.; Wu, F. Optimal Design and Control Implementation of UPQC Based on Variable Phase Angle Control Method. IEEE Trans. Ind. Inform. 2018, 14, 3109–3123. [Google Scholar] [CrossRef]
- Ray, P.K.; Das, S.R.; Mohanty, A. Fuzzy-Controller-Designed-PV-Based Custom Power Device for Power Quality Enhancement. IEEE Trans. Energy Convers. 2019, 34, 405–414. [Google Scholar] [CrossRef]
- Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694. [Google Scholar] [CrossRef]
- Kharrazi, A.; Sreeram, V.; Mishra, Y. Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network—A review. Renew. Sustain. Energy Rev. 2020, 120, 109643. [Google Scholar] [CrossRef]
- Shah, P.; Hussain, I.; Singh, B. Single-Stage SECS Interfaced With Grid Using ISOGI-FLL-Based Control Algorithm. IEEE Trans. Ind. Appl. 2018, 55, 701–711. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiao, X.; Chen, X.Y.; Huang, C.; Xu, J. Performance Evaluation of a MW-Class SMES-Based DVR System for Enhancing Transient Voltage Quality by Using d–q Transform Control. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Hafezi, H.; Faranda, R. Dynamic Voltage Conditioner: A New Concept for Smart Low-Voltage Distribution Systems. IEEE Trans. Power Electron. 2018, 33, 7582–7590. [Google Scholar] [CrossRef]
- Liao, H.; Milanovic, J.V.; Rodrigues, M.A.; Shenfield, A. Voltage Sag Estimation in Sparsely Monitored Power Systems Based on Deep Learning and System Area Mapping. IEEE Trans. Power Deliv. 2018, 33, 3162–3172. [Google Scholar] [CrossRef]
- Gee, A.M.; Robinson, F.; Yuan, W. A Superconducting Magnetic Energy Storage-Emulator/Battery Supported Dynamic Voltage Restorer. IEEE Trans. Energy Convers. 2017, 32, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.A.G.; De Vicuna, J.L.G.; Miret, J.; Castilla, M.; Guzman, R. Control Strategy for Grid-Connected Three-Phase Inverters During Voltage Sags to Meet Grid Codes and to Maximize Power Delivery Capability. IEEE Trans. Power Electron. 2018, 33, 9360–9374. [Google Scholar] [CrossRef] [Green Version]
- Naderi, Y.; Hosseini, S.H.; Zadeh, S.G.; Mohammadi-Ivatloo, B.; Vasquez, J.C.; Guerrero, J. An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. Renew. Sustain. Energy Rev. 2018, 93, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Rajpurohit, B.; Singh, S. A review on economics of power quality: Impact, assessment and mitigation. Renew. Sustain. Energy Rev. 2018, 88, 363–372. [Google Scholar] [CrossRef]
- Zheng, Z.-X.; Xiao, X.-Y.; Chen, X.Y.; Huang, C.-J.; Zhao, L.-H.; Li, C.-S. Performance Evaluation of a MW-Class SMES-BES DVR System for Mitigation of Voltage Quality Disturbances. IEEE Trans. Ind. Appl. 2018, 54, 3090–3099. [Google Scholar] [CrossRef]
- Bastos, A.F.; Lao, K.-W.; Todeschini, G.; Santoso, S. Accurate Identification of Point-on-Wave Inception and Recovery Instants of Voltage Sags and Swells. IEEE Trans. Power Deliv. 2019, 34, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Biricik, S.; Komurcugil, H.; Tuyen, N.D.; Basu, M. Protection of Sensitive Loads Using Sliding Mode Controlled Three-Phase DVR With Adaptive Notch Filter. IEEE Trans. Ind. Electron. 2019, 66, 5465–5475. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Wu, H.; Yang, T. A Novel Dual-DC-Port Dynamic Voltage Restorer With Reduced-Rating Integrated DC–DC Converter for Wide-Range Voltage Sag Compensation. IEEE Trans. Power Electron. 2019, 34, 7437–7449. [Google Scholar] [CrossRef]
- Shakeri, S.; Esmaeili, S.; Koochi, M.H.R. Determining accurate area of vulnerability for reliable voltage sag assessment considering wind turbine ride-through capability. Int. J. Electr. Power Energy Syst. 2020, 119, 105875. [Google Scholar] [CrossRef]
- Hasan, S.; Nair, A.R.; Bhattarai, R.; Kamalasadan, S.; Muttaqi, K.M. A Coordinated Optimal Feedback Control of Distributed Generators for Mitigation of Motor Starting Voltage Sags in Distribution Networks. IEEE Trans. Ind. Appl. 2020, 56, 864–875. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Leborgne, R.C. A new approach for voltage sag source relative location in active distribution systems with the presence of inverter-based distributed generations. Electr. Power Syst. Res. 2020, 182, 106222. [Google Scholar] [CrossRef]
- Camacho, A.; Castilla, M.; Miret, J.; De Vicuna, L.G.; Andres, G.L.M. Control Strategy for Distribution Generation Inverters to Maximize the Voltage Support in the Lowest Phase During Voltage Sags. IEEE Trans. Ind. Electron. 2018, 65, 2346–2355. [Google Scholar] [CrossRef]
- Kang, T.; Choi, S.; Morsy, A.S.; Enjeti, P.N. Series Voltage Regulator for a Distribution Transformer to Compensate Voltage Sag/Swell. IEEE Trans. Ind. Electron. 2017, 64, 4501–4510. [Google Scholar] [CrossRef]
- Camarillo-Penaranda, J.R.; Ramos, G. Fault Classification and Voltage Sag Parameter Computation Using Voltage Ellipses. IEEE Trans. Ind. Appl. 2019, 55, 92–97. [Google Scholar] [CrossRef]
- Wei, P.; Xu, Y.; Wu, Y.; Li, C. Research on classification of voltage sag sources based on recorded events. CIRED Open Access Proc. J. 2017, 2017, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Huchche, V.; Patne, N.R.; Junghare, A. Computation of Energy Loss in an Induction Motor During Unsymmetrical Voltage Sags—A Graphical Method. IEEE Trans. Ind. Inform. 2017, 14, 2023–2030. [Google Scholar] [CrossRef]
- Mosaad, M.I.; El-Raouf, M.O.A.; Al-Ahmar, M.A.; Bendary, F.M. Optimal PI controller of DVR to enhance the performance of hybrid power system feeding a remote area in Egypt. Sustain. Cities Soc. 2019, 47, 101469. [Google Scholar] [CrossRef]
- Raveendra, N.; Madhusudhan, V.; Laxmi, A.J. RFLSA control scheme for power quality disturbances mitigation in DSTATCOM with n-level inverter connected power systems. Energy Syst. 2019, 11, 753–778. [Google Scholar] [CrossRef]
- Varma, R.K.; Maleki, H. PV Solar System Control as STATCOM (PV-STATCOM) for Power Oscillation Damping. IEEE Trans. Sustain. Energy 2018, 10, 1793–1803. [Google Scholar] [CrossRef]
- Rivas, A.E.L.; Abrão, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res. 2020, 189, 106602. [Google Scholar] [CrossRef]
- Yuan, C.; Liao, Y.; Kong, L.; Xiao, H. Fault diagnosis method of distribution network based on time sequence hierarchical fuzzy petri nets. Electr. Power Syst. Res. 2021, 191, 106870. [Google Scholar] [CrossRef]
- Bahmanyar, A.; Jamali, S. Fault location in active distribution networks using non-synchronized measurements. Int. J. Electr. Power Energy Syst. 2017, 93, 451–458. [Google Scholar] [CrossRef]
- Silos-Sanchez, A.; Villafafila-Robles, R.; Lloret-Gallego, P. Novel fault location algorithm for meshed distribution networks with DERs. Electr. Power Syst. Res. 2020, 181, 106182. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.; Singh, A. Distribution transformer failure modes, effects and criticality analysis (FMECA). Eng. Fail. Anal. 2019, 99, 180–191. [Google Scholar] [CrossRef]
- Murugan, R.; Ramasamy, R. Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Eng. Fail. Anal. 2019, 96, 274–288. [Google Scholar] [CrossRef]
- Aj, C.; Salam, M.; Rahman, Q.; Wen, F.; Ang, S.; Voon, W. Causes of transformer failures and diagnostic methods – A review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar] [CrossRef]
- Liu, R.; Dan, B.; Zhou, M.; Zhang, Y. Coordinating contracts for a wind-power equipment supply chain with joint efforts on quality improvement and maintenance services. J. Clean. Prod. 2020, 243, 118616. [Google Scholar] [CrossRef]
- Nascimento, S.D.; Gouvêa, M.M. Voltage Stability Enhancement in Power Systems with Automatic Facts Device Allocation. Energy Procedia 2017, 107, 60–67. [Google Scholar] [CrossRef]
- Hossain, E.; Perez, R.; Nasiri, A.; Bayindir, R. Stability improvement of microgrids in the presence of constant power loads. Int. J. Electr. Power Energy Syst. 2018, 96, 442–456. [Google Scholar] [CrossRef]
- Choudhury, S.; Bhowmik, P.; Rout, P.K. Economic load sharing in a D-STATCOM Integrated Islanded Microgrid based on Fuzzy Logic and Seeker Optimization Approach. Sustain. Cities Soc. 2018, 37, 57–69. [Google Scholar] [CrossRef]
- Baghban-Novin, S.; Mahzouni-Sani, M.; Hamidi, A.; Golshannavaz, S.; Nazarpour, D.; Siano, P. Investigating the impacts of feeder reforming and distributed generation on reactive power demand of distribution networks. Sustain. Energy Grids Netw. 2020, 22, 100350. [Google Scholar] [CrossRef]
- Khoshkbar-Sadigh, A.; Heydari, M.; Tedde, M.; Smedley, K.; Arghandeh, R.; Von Meier, A. A unified platform enabling power system circuit model data transfer among different software. In Proceedings of the 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ajanovic, A.; Hiesl, A.; Haas, R. On the role of storage for electricity in smart energy systems. Energy 2020, 200, 117473. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, X.; Chen, Y.; Lai, J.; Li, L.; Qi, Z. DSTATCOM integrated with Y-y connection transformer for reactive power compensation. Int. J. Electr. Power Energy Syst. 2020, 117, 105721. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Ravi, K.; Devabalaji, K. DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng. J. 2017, 8, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Sanam, J.; Ganguly, S.; Panda, A.K.; Hemanth, C. Optimization of Energy Loss Cost of Distribution Networks with the Optimal Placement and Sizing of DSTATCOM Using Differential Evolution Algorithm. Arab. J. Sci. Eng. 2017, 42, 2851–2865. [Google Scholar] [CrossRef]
- Chugh, S.; Chaudhari, C.; Sonkar, K.; Sharma, A.; Kapur, G.; Ramakumar, S. Experimental and modelling studies of low temperature PEMFC performance. Int. J. Hydrog. Energy 2020, 45, 8866–8874. [Google Scholar] [CrossRef]
- Ou, K.; Yuan, W.-W.; Choi, M.; Yang, S.; Jung, S.; Kim, Y.-B. Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system. Int. J. Hydrog. Energy 2018, 43, 15433–15444. [Google Scholar] [CrossRef]
- Kong, L.; Yu, J.; Cai, G. Modeling, control and simulation of a photovoltaic /hydrogen/ supercapacitor hybrid power generation system for grid-connected applications. Int. J. Hydrog. Energy 2019, 44, 25129–25144. [Google Scholar] [CrossRef]
- Kordestani, M.; Zanj, A.; Orchard, M.; Saif, M. A Modular Fault Diagnosis and Prognosis Method for Hydro-Control Valve System Based on Redundancy in Multisensor Data Information. IEEE Trans. Reliab. 2018, 68, 330–341. [Google Scholar] [CrossRef]
- Chi, X.; Quan, S.; Chen, J.; Wang, Y.X.; He, H. Proton exchange membrane fuel cell-powered bidirectional DC motor control based on adaptive sliding-mode technique with neural network estimation. Int. J. Hydrog. Energy 2020, 45, 20282–20292. [Google Scholar] [CrossRef]
Services Benefit | Electric Power System Domain | Transmission Network System | Distribution Network System | Customer Side |
---|---|---|---|---|
Power Rating | (10~100 s) MW | (0.010~10) MW | (0.002~2) MW | |
Transmission Network System | Transmission deferral | √ | √ | X |
Voltage support | √ | √ | √ | |
Inertia | √ | √ | √ | |
Frequency response | √ | √ | √ | |
Black start | √ | √ | √ | |
Distribution Network System | Distribution deferral | X | √ | X |
Voltage Sag | X | √ | √ | |
Voltage spike | X | √ | √ | |
Voltage Unbalance | X | √ | √ | |
Noise | X | √ | √ | |
Harmonic distortion | X | √ | √ | |
Reliability service | X | √ | √ | |
Micro-grid | X | √ | √ | |
Customer Side | Bill reduction | X | X | √ |
Backup power | X | X | √ |
Issue | Definition | Causes | Role ESS? |
---|---|---|---|
Voltage sag | 10% to for 0.50 cycle to 60 s. | Large motor start-ups Customer’s installation faults Poor system maintenance System faults | Yes |
Voltage swell | from 10% up to 80% for 0.5 cycle to 60 s. | Badly designed power sources Load switching Defectively regulated transformers Badly designed power sources | Yes |
Variable fluctuation | Leading cause of frequent switching The root cause of welding plants Determine the cause arc furnaces | Yes | |
Voltage spikes/surges | Disconnecting heavy loads. | Yes | |
Long interruptions | while electrical power supply interruptions occur for > 1 s or 2 s duration of time | Poor coordination of protection devices Failure in equipment and fire | Yes |
Harmonic | The voltage or current waveform frequencies are multiple fundamental such as non-sinusoidal waveforms. | The immediate cause of system resonance Non-linear loads utilized of tool generating non-sinusoidal currents | Yes |
System Quantities | Unit | Ratings |
---|---|---|
Voltage source | kV | 33/11 |
Voltage line | V | 230 |
Rated power of HFC | kW | 50 |
V | 0.9632 | |
−0.00291 | ||
) | ||
Ω | 0.00029 | |
Number of cells in series | - | 100 |
Line Frequency | Hz | 50 |
Series Transformer Turns Ratio | - | 1:1 |
IGBT generator | - | 3-arm bridge (6 pulses) |
Line Impedance | H, Ω | 0.005, 0.001 |
Load Resistance | Ω | 180 |
Load Inductance | H | 0.1926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaleel, M.M.; Adzman, M.R.; Zali, S.M. An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM. Energies 2021, 14, 7073. https://doi.org/10.3390/en14217073
Khaleel MM, Adzman MR, Zali SM. An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM. Energies. 2021; 14(21):7073. https://doi.org/10.3390/en14217073
Chicago/Turabian StyleKhaleel, Mohamed Mohamed, Mohd Rafi Adzman, and Samila Mat Zali. 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM" Energies 14, no. 21: 7073. https://doi.org/10.3390/en14217073
APA StyleKhaleel, M. M., Adzman, M. R., & Zali, S. M. (2021). An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM. Energies, 14(21), 7073. https://doi.org/10.3390/en14217073