Is ortho-Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Kinetic Modeling
3. Results
3.1. Ignition Delays
3.2. Kinetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; Yee, N.W.; Filip, S.V.; Hetrick, C.E.; Yang, B.; Green, W.H. Modeling Study of the Anti-Knock Tendency of Substituted Phenols as Additives: An Application of the Reaction Mechanism Generator (RMG). Phys. Chem. Chem. Phys. 2018, 20, 10637–10649. [Google Scholar] [CrossRef] [Green Version]
- Mehl, M.; Vanhove, G.; Pitz, W.J.; Ranzi, E. Oxidation and Combustion of the N-Hexene Isomers: A Wide Range Kinetic Modeling Study. Combust. Flame 2008, 155, 756–772. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-W.; Li, Y.; O’Connor, E.; Somers, K.P.; Thion, S.; Keesee, C.; Mathieu, O.; Petersen, E.L.; DeVerter, T.A.; Oehlschlaeger, M.A.; et al. A Comprehensive Experimental and Modeling Study of Isobutene Oxidation. Combust. Flame 2016, 167, 353–379. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Somers, K.P.; Mehl, M.; Pitz, W.J.; Cracknell, R.F.; Curran, H.J. Probing the Antagonistic Effect of Toluene as a Component in Surrogate Fuel Models at Low Temperatures and High Pressures. A Case Study of Toluene/Dimethyl Ether Mixtures. Proc. Combust. Inst. 2017, 36, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Singaravelan, K.; Dhivakar, A.K.; Sivananth, M.; Vedharaj, S.; Balasubramanian, K.A. Effect of Oxygenated Additives on the Characteristics of a Diesel Engine. Int. J. Appl. Eng. Res. 2015, 10, 5. [Google Scholar]
- Roubaud, A.; Lemaire, O.; Minetti, R.; Sochet, L.R. High Pressure Auto-Ignition and Oxidation Mechanisms of o-Xylene, o-Ethyltoluene, and n-Butylbenzene between 600 and 900 K. Combust. Flame 2000, 123, 561–571. [Google Scholar] [CrossRef]
- Dussan, K.; Dooley, S.; Monaghan, R.F.D. A Model of the Chemical Composition and Pyrolysis Kinetics of Lignin. Proc. Combust. Inst. 2019, 37, 2697–2704. [Google Scholar] [CrossRef]
- Font Palma, C. Model for Biomass Gasification Including Tar Formation and Evolution. Energy Fuels 2013, 27, 2693–2702. [Google Scholar] [CrossRef]
- Weng, J.-J.; Tian, Z.-Y.; Liu, Y.-X.; Pan, Y.; Zhu, Y.-N. Investigation on the Co-Combustion Mechanism of Coal and Biomass on a Fixed-Bed Reactor with Advanced Mass Spectrometry. Renew. Energy 2020, 149, 1068–1076. [Google Scholar] [CrossRef]
- Vanhove, G.; Petit, G.; Minetti, R. Experimental Study of the Kinetic Interactions in the Low-Temperature Autoignition of Hydrocarbon Binary Mixtures and a Surrogate Fuel. Combust. Flame 2006, 145, 521–532. [Google Scholar] [CrossRef]
- Mergulhão, C.S.; Carstensen, H.-H.; Song, H.; Wagnon, S.W.; Pitz, W.J.; Vanhove, G. Probing the Antiknock Effect of Anisole through an Ignition, Speciation and Modeling Study of Its Blends with Isooctane. Proc. Combust. Inst. 2021, 38, 739–748. [Google Scholar] [CrossRef]
- Song, H.; Dauphin, R.; Vanhove, G. A Kinetic Investigation on the Synergistic Low-Temperature Reactivity, Antagonistic RON Blending of High-Octane Fuels: Diisobutylene and Cyclopentane. Combust. Flame 2020, 220, 23–33. [Google Scholar] [CrossRef]
- Fenard, Y.; Song, H.; Minwegen, H.; Parab, P.; Sampaio Mergulhão, C.; Vanhove, G.; Heufer, K.-A. 2,5-Dimethyltetrahydrofuran Combustion: Ignition Delay Times at High and Low Temperatures, Speciation Measurements and Detailed Kinetic Modeling. Combust. Flame 2019, 203, 341–351. [Google Scholar] [CrossRef]
- Goldsborough, S.S.; Hochgreb, S.; Vanhove, G.; Wooldridge, M.S.; Curran, H.J.; Sung, C.-J. Advances in Rapid Compression Machine Studies of Low- and Intermediate-Temperature Autoignition Phenomena. Prog. Energy Combust. Sci. 2017, 63, 1–78. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, D.G.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; Caltech: Pasadena, CA, USA, 2018. [Google Scholar]
- Fang, R.; Kukkadapu, G.; Wang, M.; Wagnon, S.W.; Zhang, K.; Mehl, M.; Westbrook, C.K.; Pitz, W.J.; Sung, C.-J. Fuel Molecular Structure Effect on Autoignition of Highly Branched Iso-Alkanes at Low-to-Intermediate Temperatures: Iso-Octane versus Iso-Dodecane. Combust. Flame 2020, 214, 152–166. [Google Scholar] [CrossRef]
- Wagnon, S.W.; Thion, S.; Nilsson, E.J.K.; Mehl, M.; Serinyel, Z.; Zhang, K.; Dagaut, P.; Konnov, A.A.; Dayma, G.; Pitz, W.J. Experimental and Modeling Studies of a Biofuel Surrogate Compound: Laminar Burning Velocities and Jet-Stirred Reactor Measurements of Anisole. Combust. Flame 2018, 189, 325–336. [Google Scholar] [CrossRef]
- Bounaceur, R.; Costa, I.D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F. Experimental and Modeling Study of the Oxidation of Toluene. Int. J. Chem. Kinet. 2005, 37, 25–49. [Google Scholar] [CrossRef]
- Emdee, J.L.; Brezinsky, K.; Glassman, I. A Kinetic Model for the Oxidation of Toluene near 1200 K. J. Phys. Chem. 1992, 96, 2151–2161. [Google Scholar] [CrossRef]
- Lindstedt, R.P.; Maurice, L.Q. Detailed Kinetic Modelling of Toluene Combustion. Combust. Sci. Technol. 1996, 120, 119–167. [Google Scholar] [CrossRef]
- Costa, I.D.; Fournet, R.; Billaud, F.; Battin-Leclerc, F. Experimental and Modeling Study of the Oxidation of Benzene. Int. J. Chem. Kinet. 2003, 35, 503–524. [Google Scholar] [CrossRef]
- Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, USA, 2003; ISBN 0-8493-1589-1. [Google Scholar]
- Davies, G.A.; Long, R. The Kinetics of the Thermal Hydrocracking of Cresols. J. Appl. Chem. 1965, 15, 117–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mergulhão, C.S.; Fenard, Y.; Vanhove, G. Is ortho-Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel. Energies 2021, 14, 7105. https://doi.org/10.3390/en14217105
Mergulhão CS, Fenard Y, Vanhove G. Is ortho-Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel. Energies. 2021; 14(21):7105. https://doi.org/10.3390/en14217105
Chicago/Turabian StyleMergulhão, Carolina S., Yann Fenard, and Guillaume Vanhove. 2021. "Is ortho-Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel" Energies 14, no. 21: 7105. https://doi.org/10.3390/en14217105
APA StyleMergulhão, C. S., Fenard, Y., & Vanhove, G. (2021). Is ortho-Cresol a Viable Lignocellulosic Blendstock? A Kinetic Study of Its Co-Oxidation within a Surrogate Fuel. Energies, 14(21), 7105. https://doi.org/10.3390/en14217105