A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions
Abstract
:1. Introduction and Background
- It efficiently suppresses undesirable components present in the input signal, and can therefore be applied to both voltage and current signals.
- It provides fast, accurate, and robust phasor and frequency estimates under diverse operating conditions (faults, frequency ramps, power swings, harmonics).
- It detects abnormal system conditions quickly (in less than one-cycle).
2. Proposed Filter for DDC Rejection
3. Phasor Estimation at Off-Nominal Frequencies
4. Proposed Frequency Estimation Algorithm
5. Fast Detection of System Operating Conditions
- (1)
- If , it implies that the system operates under normal conditions and the signal parameters have varied slightly. In such conditions, the estimated phasors from previous and current data strings can be used for accurate estimation of frequency (see Section 6.1).
- (2)
- If , it implies that the system is faced with an abnormal condition resulting in the signal parameters differing significantly from the previous data string. In such conditions, the proposed iESPRIT must be used for precise estimation of frequency, and subsequent correction of the estimated phasor (see Section 6.2).
6. Accuracy Enhancement of Estimated Phasor and Frequency under Detected Conditions
6.1. Implementation of the Phasor Estimation Algorithm for Frequency Estimation under Normal Conditions
Algorithm 1: Proposed Frequency Estimation Algorithm |
Input: signal samples, , Output: estimated frequency Initialization: M and L 1: take L-length of input data 2: create , estimate , and calculate using (22), (24) and (35), respectively 3: calculate using (36) 4: save as for the next estimation 5: if () then 6: calculate using (39) 7: find using the lookup table 8: estimate frequency using (40) 9: go to line 18 10: end if 11: if () then 12: calculate eigenvectors of 13: find by (26), split it into and by (28) 14: estimate using (31) 15: calculate eigenvalues of 16: estimate frequency using (34) 17: end if 18: return |
6.2. Implementation of the Proposed Frequency Estimation Algorithm for Phasor Estimation under Abnormal Conditions
7. Parameter Selection for Implementation
7.1. Choosing Optimal Value for the Filter Order R
7.2. Choosing Optimal Value for N
7.3. Choosing Optimal Value for M
7.4. Choosing Optimal Value for L
8. Simulation Results
8.1. Performance Evaluation in the Presence of DC Offset, DDC, Harmonics, and Noise in Both Nominal and Off-Nominal Frequency Conditions
8.2. Performance Evaluation for Dynamic Frequency Ramp Test
8.3. Modulation Test
8.4. Step Change Test
8.5. Performance Evaluation Using Power System Signals
8.6. Computational Burden and Sensitivity Analysis
8.7. Noise Propagation through the Proposed Algorithm
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. P and Q Correction Coefficients
Appendix A.1. Variations of P and Q for Different Values of Δf and N
(Hz) | |P| | () | |Q| | () |
---|---|---|---|---|
−5 | 0.9886 | −14.37 | 0.0434 | 29.37 |
−4.5 | 0.9908 | −12.94 | 0.0390 | 27.94 |
−4 | 0.9927 | −11.5 | 0.0346 | 26.5 |
−3.5 | 0.9944 | −10.06 | 0.0302 | 25.06 |
−3 | 0.9959 | −8.62 | 0.0258 | 23.62 |
−2.5 | 0.9972 | −7.19 | 0.0215 | 22.19 |
−2 | 0.9982 | −5.75 | 0.0171 | 20.75 |
−1.5 | 0.9990 | −4.31 | 0.0128 | 19.31 |
−1 | 0.9995 | −2.87 | 0.0085 | 17.87 |
−0.5 | 0.9999 | −1.44 | 0.0042 | 16.44 |
0 | 1.0000 | 0 | 0 | 15 |
0.5 | 0.9999 | 1.44 | 0.0042 | 13.56 |
1 | 0.9995 | 2.87 | 0.0084 | 12.12 |
1.5 | 0.9990 | 4.31 | 0.0125 | 10.69 |
2 | 0.9982 | 5.75 | 0.0166 | 9.25 |
2.5 | 0.9972 | 7.19 | 0.0206 | 7.81 |
3 | 0.9959 | 8.62 | 0.0246 | 6.37 |
3.5 | 0.9944 | 10.06 | 0.0285 | 4.94 |
4 | 0.9927 | 11.5 | 0.0324 | 3.5 |
4.5 | 0.9908 | 12.94 | 0.0363 | 2.06 |
5 | 0.9886 | 14.37 | 0.0400 | 0.62 |
N | |P| | () | |Q| | () |
---|---|---|---|---|
12 | 0.9982 | 5.5 | 0.0172 | 24.5 |
24 | 0.9982 | 5.75 | 0.0166 | 9.25 |
36 | 0.9982 | 5.83 | 0.0164 | 4.17 |
48 | 0.9982 | 5.876 | 0.0164 | 1.62 |
60 | 0.9982 | 5.9 | 0.0164 | 0.1 |
72 | 0.9982 | 5.92 | 0.0164 | −0.92 |
84 | 0.9982 | 5.93 | 0.0164 | −1.64 |
96 | 0.9982 | 5.94 | 0.0164 | −2.19 |
108 | 0.9982 | 5.947 | 0.0164 | −2.61 |
120 | 0.9982 | 5.95 | 0.0164 | −2.95 |
Appendix A.2. Impact of Q on Phasor Estimation Accuracy
(Hz) | Max. TVE (%) | |
---|---|---|
Without Q | With Q | |
−2 | 0.288 | 0.218 |
−1 | 0.223 | 0.168 |
−0.5 | 0.156 | 0.128 |
0 | 0.08 | 0.08 |
+0.5 | 0.152 | 0.126 |
+1 | 0.219 | 0.161 |
+2 | 0.285 | 0.217 |
Appendix B. Equality of the Matrices Q and U
Appendix C. Proof of Calculation Using (39)
- Deviation of frequency from its nominal value is very small (hence, ).
- The input signal is approximately periodic (hence, ).
- Frequency varies negligibly (hence, ).
References
- Bollen, M.H.; Gu, I.Y. Signal Processing of Power Quality Disturbances; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Amirat, Y.; Oubrahim, Z.; Ahmed, H.; Benbouzid, M.; Wang, T. Phasor estimation for grid power monitoring: Least square vs. linear Kalman filter. Energies 2020, 13, 2456. [Google Scholar] [CrossRef]
- Zhan, L.; Liu, Y.; Liu, Y. A clarke transformation-based DFT phasor and frequency algorithm for wide frequency range. IEEE Trans. Smart Grid 2018, 9, 67–77. [Google Scholar] [CrossRef]
- Jafarpisheh, B.; Madani, S.M.; Shahrtash, S.M. A new DFT-based phasor estimation algorithm using high-frequency modulation. IEEE Trans. Power Deliv. 2017, 32, 2416–2423. [Google Scholar] [CrossRef]
- Jafarpisheh, B.; Madani, S.M.; Jafarpisheh, S. Improved DFT-based phasor estimation algorithm using down-sampling. IEEE Trans. Power Deliv. 2018, 33, 3242–3245. [Google Scholar] [CrossRef]
- Jafarpisheh, B. Phasor estimation algorithm based on complex frequency filters for digital relaying. IEEE Trans. Instrum. Meas. 2018, 67, 582–592. [Google Scholar] [CrossRef]
- Kang, S.H.; Seo, W.S.; Nam, S.R. A frequency estimation method based on a revised 3-Level discrete Fourier transform with an estimation delay reduction technique. Energies 2020, 13, 2256. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, W. A novel interpolated DFT synchrophasor estimation algorithm with an optimized combined cosine self-convolution window. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar]
- Yu, H.; Jin, Z.; Zhang, H.; Terzija, V. A phasor estimation algorithm robust to decaying DC component. IEEE Trans. Power Deliv. 2021, 1. [Google Scholar] [CrossRef]
- Frigo, G.; Derviškadić, A.; Paolone, M. Reduced leakage synchrophasor estimation: Hilbert transform plus interpolated DFT. IEEE Trans. Instrum. Meas. 2019, 68, 3468–3483. [Google Scholar] [CrossRef] [Green Version]
- Derviškadić, A.; Romano, P.; Paolone, M. Iterative-interpolated DFT for synchrophasor estimation: A single algorithm for P- and M-class compliant PMUs. IEEE Trans. Instrum. Meas. 2018, 67, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Fu, L. A multiple frequency Taylor model-based dynamic synchrophasor estimation algorithm. IEEE Trans. Smart Grid 2019, 10, 6870–6882. [Google Scholar] [CrossRef]
- Vejdan, S. Accurate dynamic phasor estimation based on the signal model under off-nominal frequency and oscillations. IEEE Trans. Smart Grid 2017, 8, 708–719. [Google Scholar] [CrossRef]
- Kim, W.J.; Nam, S.R.; Kang, S.H. Adaptive phasor estimation algorithm based on a least squares method. Energies 2019, 12, 1387. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.V.K. Accurate phasor and frequency estimation during power system oscillations using least squares. IET Sci. Meas. Technol. 2019, 13, 989–994. [Google Scholar]
- Choqueuse, V.; Belouchrani, A.; Auger, F.; Benbouzid, M. Frequency and phasor estimations in three-phase systems: Maximum likelihood algorithms and theoretical performance. IEEE Trans. Smart Grid 2019, 10, 3248–3258. [Google Scholar] [CrossRef]
- Castello, P.; Ferrero, R.; Pegoraro, P.A.; Toscani, S. Space vector Taylor–Fourier models for synchrophasor, frequency, and ROCOF measurements in three-phase systems. IEEE Trans. Instrum. Meas. 2019, 68, 1313–1321. [Google Scholar] [CrossRef]
- da Silva, C.D.L. Phasor estimation in power systems using a neural network with online training for numerical relays purposes. IET Sci. Meas. Technol. 2015, 9, 836–841. [Google Scholar] [CrossRef]
- Affijulla, S.; Tripathy, P. Development of phasor estimation algorithm for P-class PMU suitable in protection applications. IEEE Trans. Smart Grid 2018, 9, 1250–1260. [Google Scholar] [CrossRef]
- Reddy, M.V.; Sodhi, R. An open loop fundamental and harmonic phasor estimator for single-phase voltage signals. IEEE Trans. Ind. Inform. 2020, 16, 4535–4546. [Google Scholar] [CrossRef]
- Wang, L.; Suonan, J. A fast algorithm to estimate phasor in power systems. IEEE Trans. Power Deliv. 2017, 32, 1147–1156. [Google Scholar] [CrossRef]
- Zamora-Mendez, A.; Paternina, M.R.A.; Vázquez, E.; Ramirez, J.M.; de Serna, J.A.L.O. Distance relays based on the Taylor–Kalman-Fourier filter. IEEE Trans. Power Deliv. 2016, 31, 928–935. [Google Scholar] [CrossRef]
- De Apráiz, M.; Diego, R.I.; Barros, J. An extended Kalman filter approach for accurate instantaneous dynamic phasor estimation. Energies 2018, 11, 2918. [Google Scholar] [CrossRef] [Green Version]
- Jafarpisheh, B. Power system frequency estimation using adaptive accelerated MUSIC. IEEE Trans. Instrum. Meas. 2018, 67, 2592–2602. [Google Scholar] [CrossRef]
- Drummond, Z.D. An optimized subspace-based approach to synchrophasor estimation. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H.; Bi, T. A novel frequency estimation method based on complex bandpass filters for P-class PMUs with short reporting latency. IEEE Trans. Power Deliv. 2020, 1. [Google Scholar] [CrossRef]
- Chen, L. Harmonic phasor estimator for P-class phasor measurement units. IEEE Trans. Instrum. Meas. 2020, 69, 1556–1565. [Google Scholar] [CrossRef]
- Manolakis, D.; Ingle, V.; Kogon, S. Statistical and Adaptive Signal Processing; Artech: Norwood, MA, USA, 2005. [Google Scholar]
- IEEE Standard for Synchrophasor Measurements for Power Systems—Amendment 1: Modification of Selected Performance Requirements; IEEE Std C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-2011); 2014; pp. 1–25. [CrossRef]
- IEEE/IEC International Standard—Measuring Relays and Protection Equipment— Part 118-1: Synchrophasor for Power Systems—Measurements; IEC/IEEE 60255-118-1:2018; 2018; pp. 1–78. [CrossRef]
- Benmouyal, G. Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans. Power Deliv. 1995, 10, 621–630. [Google Scholar] [CrossRef]
- Affijulla, S.; Tripathy, P. Development of dictionary-based phasor estimator suitable for P-class phasor measurement unit. IEEE Trans. Instrum. Meas. 2018, 67, 2603–2615. [Google Scholar] [CrossRef]
- Phadke, A.G.; Thorp, J.S. Synchronized Phasor Measurements and Their Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1. [Google Scholar]
- Björck, Å. Numerical Methods in Matrix Computations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Roy, R.H.; Kailath, T. ESPRIT–Estimation of signal parameters via rotational invariance techniques. Opt. Eng. 1990, 29, 296–313. [Google Scholar]
- Singh, A.K.; Pal, B.C. Rate of change of frequency estimation for power systems using interpolated DFT and Kalman filter. IEEE Trans. Power Syst. 2019, 34, 2509–2517. [Google Scholar] [CrossRef]
- Choqueuse, V.; Belouchrani, A.; Benbouzid, M. Phasor estimation using conditional maximum likelihood: Strengths and limitations. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2251–2255. [Google Scholar]
R | 3 | 4 | 6 | 8 | 10 | 15 | 20 |
---|---|---|---|---|---|---|---|
Max. TVE (%) | 0.76 | 0.67 | 0.28 | 0.22 | 0.14 | 0.04 | 0.01 |
Max. (ms) | 20.7 | 21.7 | 26.9 | 30.8 | 32.9 | 36.2 | 38.2 |
N | 16 | 32 | 128 | 512 | 1024 | 16,384 |
(%) | 0.47 | 0.43 | 0.40 | 0.39 | 0.39 | 0.38 |
M | 3 | 4 | 5 | 6 | 8 | 10 | 15 |
---|---|---|---|---|---|---|---|
Max. |FE| (mHz) | 0.86 | 0.41 | 0.34 | 0.18 | 0.09 | 0.03 | 0.003 |
Exe. Time (ms) | 0.12 | 0.23 | 0.47 | 0.81 | 1.74 | 3.05 | 9.7 |
L | N | 2N | ||||
---|---|---|---|---|---|---|
Max. |FE| (mHz) | 1.03 | 0.33 | 0.25 | 0.04 | 0.007 | 0.0008 |
(ms) | 6.8 | 11.4 | 14.3 | 17.2 | 29.1 | 33.9 |
Algorithm | Max. TVE (%) | Max. |FE| (mHz) | ||||
---|---|---|---|---|---|---|
Mean | RMS | Max. | Mean | RMS | Max. | |
DS-DFT [5] | 1.05 | 2.09 | 4.86 | N/A | N/A | N/A |
AM [13] | 1.23 | 2.54 | 5.78 | 8.23 | 11.4 | 32.4 |
PM [13] | 1.06 | 2.38 | 4.97 | 6.51 | 9.21 | 34.6 |
[24] | N/A | N/A | N/A | 2.28 | 3.74 | 6.63 |
Proposed Approach | 0.58 | 0.67 | 0.79 | 0.56 | 0.69 | 1.01 |
Algorithm | Max. TVE (%) | Max. |FE| (mHz) | ||||
---|---|---|---|---|---|---|
Mean | RMS | Max. | Mean | RMS | Max. | |
DS-DFT [5] | 1.32 | 2.59 | 5.66 | N/A | N/A | N/A |
AM [13] | 1.35 | 2.67 | 5.93 | 9.14 | 12.6 | 36.21 |
PM [13] | 1.13 | 2.52 | 5.07 | 6.63 | 9.42 | 35.06 |
[24] | N/A | N/A | N/A | 2.69 | 4.17 | 7.12 |
Proposed Approach | 0.67 | 0.78 | 0.89 | 0.66 | 0.80 | 1.07 |
Algorithm | Max. TVE (%) | Max. |FE| (mHz) |
---|---|---|
DS-DFT [5] | 2.37 | N/A |
AM [13] | 0.0096 | 2.3 |
PM [13] | 0.0008 | 1.9 |
[24] | N/A | 0.95 |
Proposed Approach | 0.43 | 0.64 |
Algorithm | Phasor | Frequency | |||
---|---|---|---|---|---|
Rsp. (ms) | Max O/U.S. (%) * | Rsp. (ms) | |||
DS-DFT [5] | 0.1 | 0 | 14.6 | 4.1 | N/A |
0 | 15.5 | 4.6 | N/A | ||
AM [13] | 0.1 | 0 | 15.3 | 5 | 41.3 |
0 | 28.6 | 4 | 40.7 | ||
PM [13] | 0.1 | 0 | 14.2 | 5 | 57.7 |
0 | 30.9 | 4 | 57.1 | ||
[24] | 0.1 | 0 | N/A | N/A | 12.4 |
0 | N/A | N/A | 12.7 | ||
Proposed Approach | 0.1 | 0 | 13.9 | 2.7 | 11.6 |
0 | 14.4 | 3.3 | 12.1 |
Sc. | DS-DFT [5] | AM [13] | PM [13] | [24] | Proposed Approach |
---|---|---|---|---|---|
1 | 1.11 N/A | 2.16 10.3 | 1.04 6.8 | N/A 3.2 | 0.72 0.81 |
2 | 1.26 N/A | 2.23 11.2 | 1.12 7.3 | N/A 3.8 | 0.78 0.85 |
Test | Max. TVE (%) | Max. |FE| (mHz) | Execution Time (s) | |
---|---|---|---|---|
Steady-State (Section 8.1) | 0.97 | 5.02 | 46 | |
0.58 | 0.56 | 283 | ||
0.51 | 0.47 | 405 | ||
Frequency Ramp (Section 8.2) | 1.09 | 5.17 | 57 | |
0.67 | 0.66 | 367 | ||
0.59 | 0.58 | 472 | ||
Modulation Test (Section 8.3) | 1.03 | 5.11 | 52 | |
0.43 | 0.61 | 319 | ||
0.36 | 0.56 | 423 | ||
Magnitude Step Change (Section 8.4) | 1.12 | 5.09 | 54 | |
0.69 | 0.59 | 326 | ||
0.60 | 0.50 | 446 | ||
Phase Angle Step Change (Section 8.4) | 1.14 | 5.15 | 56 | |
0.71 | 0.63 | 339 | ||
0.63 | 0.57 | 468 | ||
Scenario 1 (Section 8.5) | 1.16 | 5.21 | 59 | |
0.72 | 0.81 | 370 | ||
0.64 | 0.74 | 484 | ||
Scenario 2 (Section 8.5) | 1.25 | 5.26 | 63 | |
0.78 | 0.85 | 391 | ||
0.71 | 0.77 | 510 |
Parameter | CRB | MSE |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafarpisheh, B.; Pal, A. A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions. Energies 2021, 14, 7112. https://doi.org/10.3390/en14217112
Jafarpisheh B, Pal A. A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions. Energies. 2021; 14(21):7112. https://doi.org/10.3390/en14217112
Chicago/Turabian StyleJafarpisheh, Babak, and Anamitra Pal. 2021. "A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions" Energies 14, no. 21: 7112. https://doi.org/10.3390/en14217112
APA StyleJafarpisheh, B., & Pal, A. (2021). A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions. Energies, 14(21), 7112. https://doi.org/10.3390/en14217112