CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor
Abstract
:1. Introduction
2. Model
2.1. Descriptions of the Membrane Reactor
2.2. Governing Equations
2.3. Geometry and Boundary Conditions
2.4. Solution Procedures
3. Validation of the Model
4. Results and Discussion
4.1. Comparison of Non−Reactive and Reactive Flow on Sweep Side
4.2. Effects of Sweep Gas Flow Rate and Fuel Composition
4.3. Effects of Inlet Temperature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Shi, C.Z.; Li, K.Z.; Zhai, K.; Wang, H.; Wei, Y.G.; Tian, D.; Zeng, C.H. Water splitting for hydrogen generation over lanthanum-calcium-iron perovskite-type membrane driven by reducing atmosphere. Int. J. Hydrogen Energy 2017, 42, 19776–19787. [Google Scholar] [CrossRef]
- Li, W.P.; Zhu, X.F.; Cao, Z.W.; Wang, W.P.; Yang, W.S. Mixed ionic-electronic conducting (MIEC) membranes for hydrogen production from water splitting. Int. J. Hydrogen Energy 2015, 40, 3452–3461. [Google Scholar] [CrossRef]
- Demirci, U.B.; Miele, P. Overview of the relative greenness of the main hydrogen production processes. J. Clean Prod. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sust. Energ. Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Fang, W.; Steinbach, F.; Cao, Z.W.; Zhu, X.F.; Feldhoff, A. A highly efficient sandwich-like symmetrical dual-phase oxygen-transporting membrane reactor for hydrogen production by water splitting. Angew. Chem. Int. Ed. 2016, 55, 8648–8651. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Y.; Yang, W.S.; Caro, J.; Wang, H.H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem. Eng. J. 2013, 220, 185–203. [Google Scholar] [CrossRef]
- Nemitallah, M.A.; Habib, M.A.; Salaudeen, S.A.; Mansir, I. Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor. Renew. Energ. 2017, 113, 221–234. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U. Hydrogen production from fossil and renewable sources using an oxygen transport membrane. Int. J. Hydrogen Energy 2010, 35, 4103–4110. [Google Scholar] [CrossRef]
- Hong, J.; Kirchen, P.; Ghoniem, A.F. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion. J. Membr. Sci. 2012, 407, 71–85. [Google Scholar] [CrossRef]
- Habib, M.A.; Ahmed, P.; Ben-Mansour, R.; Badr, H.M.; Kirchen, P.; Ghoniem, A.F. Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. J. Membr. Sci. 2013, 446, 230–243. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Badr, H.M.; Nemitallah, M.A. Characteristics of oxy-fuel combustion in an oxygen transport reactor. Energ. Fuel. 2012, 26, 4599–4606. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Liang, F.Y.; Czuprat, O.; Efimov, K.; Feldhoff, A.; Schirrmeister, S.; Schiestel, T.; Wang, H.H.; Caro, J. Hydrogen production by water dissociation in surface-modified BaCoxFeyZr1−x−yO3−δ hollow-fiber membrane reactor with improved oxygen permeation. Chem. Eur. J. 2010, 16, 7898–7903. [Google Scholar] [CrossRef]
- Lee, K.J.; Choe, Y.J.; Lee, J.S.; Hwang, H.J. Fabrication of a microtubular La0.6Sr0.4Ti0.2Fe0.8O3−δ membrane by electrophoretic deposition for hydrogen production. Adv. Mater. Sci. Eng. 2015, 2015, 505989. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.Q.; Wang, H.H.; Werth, S.; Schiestel, T.; Caro, J. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew. Chem. Int. Ed. 2008, 47, 9341–9344. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Wang, H.H.; Liang, F.Y.; Werth, S.; Schirrmeister, S.; Schiestel, T.; Caro, J. Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor. Catal. Today 2010, 156, 187–190. [Google Scholar] [CrossRef]
- Wu, X.Y.; Ghoniem, A.F.; Uddi, M. Enhancing co-production of H2 and syngas via water splitting and POM on surface-modified oxygen permeable membranes. AIChE J. 2016, 62, 4427–4435. [Google Scholar] [CrossRef]
- Liang, W.Y.; Zhou, H.Y.; Caro, J.; Jiang, H.Q. Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-δ-Sr2Fe1.5Mo0.5O5+δ membrane reactor with improved stability. Int. J. Hydrogen Energy 2018, 43, 14478–14485. [Google Scholar] [CrossRef]
- Markov, A.A.; Merkulov, O.V.; Patrakeev, M.V.; Leonidov, I.A. Hydrogen and synthesis gas co-production on oxygen membranes of mixed conductor: Scale-sensitive features of the process. Int. J. Hydrogen Energy 2019, 44, 26807–26815. [Google Scholar] [CrossRef]
- Habib, M.A.; Salaudeen, S.A.; Nemitallah, M.A.; Ben-Mansour, R.; Mokheimer, E.M. Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 2016, 96, 654–665. [Google Scholar] [CrossRef]
- Coltrin, M.E.; Glarborg, P. Chemically Reacting Flow: Theory and Practice; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fluent, I. FLUENT 6.3 User’s Guide; Fluent Inc.: Lebanon, NH, USA, 2006. [Google Scholar]
- McGee, H.A. Molecular Engineering; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Rui, Z.B.; Zhang, K.; Li, Y.; Lin, Y. Simulation of methane conversion to syngas in a membrane reactor: Part I A model including product oxidation. Int. J. Hydrogen Energy 2008, 33, 2246–2253. [Google Scholar] [CrossRef]
- Wang, H.; Gopalan, S.; Pal, U.B. Hydrogen generation and separation using Gd0.2Ce0.8O1.9δ−Gd0.08Sr0.88Ti0.95Al0.053O3±δ mixed ionic and electronic conducting membranes. Electrochim. Acta 2011, 56, 6989–6996. [Google Scholar] [CrossRef]
- Mancini, N.D.; Mitsos, A. Ion transport membrane reactors for oxy-combustion-Part II: Analysis and comparison of alternatives. Energy 2011, 36, 4721–4739. [Google Scholar] [CrossRef]
- Song, S.J.; Lee, T.; Wachsman, E.; Chen, L.; Dorris, S.; Balachandran, U. Defect structure and transport properties of Ni–SrCeO3− δ cermet for hydrogen separation membrane. J. Electrochem. Soc. 2005, 152, 125–129. [Google Scholar] [CrossRef]
- Lee, T.; Dorris, S.; Balachandran, U. Thin film preparation and hydrogen pumping characteristics of BaCe0.8Y0.2O3−δ. Solid State Ion. 2005, 176, 1479–1484. [Google Scholar] [CrossRef]
Oxygen transport membrane | La0.7Sr0.3Cu0.2Fe0.8O3-δ (LSCuF−7328) |
Effective length of membrane reactor | 10 cm |
Internal radii of quartz tube | 10 cm |
Internal radii of membrane tube | 5 cm |
Thickness of membrane | 1 cm |
Density of membrane | 6000 kg/m3 |
Thermal conductivity of membrane | 4 W/(m·K) |
Emissivity of membrane and quartz tube | 0.8 |
Sweep Gas Flow Rate (kg/s) | CH4/CO2 Mass Ratio | Inlet Temperature (K) |
---|---|---|
- | - | 1053 |
1 × 10−7 | - | 1063 |
2 × 10−7 | 0.05/0.95~0.4/0.6 | 1073 |
3 × 10−7 | - | 1083 |
- | - | 1093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chen, C.; Ye, H. CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor. Energies 2021, 14, 7175. https://doi.org/10.3390/en14217175
Zhao T, Chen C, Ye H. CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor. Energies. 2021; 14(21):7175. https://doi.org/10.3390/en14217175
Chicago/Turabian StyleZhao, Te, Chusheng Chen, and Hong Ye. 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor" Energies 14, no. 21: 7175. https://doi.org/10.3390/en14217175
APA StyleZhao, T., Chen, C., & Ye, H. (2021). CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor. Energies, 14(21), 7175. https://doi.org/10.3390/en14217175