A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Experiment
2.1. Preparation before the Experiment
2.2. Method
3. Results and Discussion
3.1. Stack Temperature
3.1.1. Parameter
3.1.2. Parameter
3.2. Stack Power
3.2.1. Parameter
3.2.2. Parameter
3.3. Monomer Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Li, H.; Wang, H.J.; Yuan, X.Z.; Wang, G.J.; Pan, M. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies. J. Power Sources 2012, 205, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.E. Fuel cell and battery electric vehicles compared. Int. J. Hydrog. Energy 2009, 34, 6005–6020. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, A.; Sethu, S.P.; Ramos, M.; Robertson, J.; Al-Jumaily, A. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. IONICS 2015, 21, 1–18. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Kim, Y.; Li, X.G. Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing. J. Power Sources 2011, 196, 1940–1947. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Wang, X. Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. J. Power Sources 2006, 162, 502–512. [Google Scholar] [CrossRef]
- Thompson, E.L.; Jorne, J.; Gasteiger, H.A. Oxygen reduction reaction kinetics in subfreezing PEM fuel cells. J. Electrochem. Soc. 2007, 154, B783–B792. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Jiao, K. Cold start of proton exchange membrane fuel cell. Prog. Energy Combust. 2018, 64, 29–61. [Google Scholar] [CrossRef]
- Wu, F.; Chen, B.; Pan, M. Degradation of the Sealing Silicone Rubbers in a Proton Exchange Membrane Fuel Cell at Cold Start Conditions. Int. J. Electrochem. Sci. 2020, 15, 3013–3028. [Google Scholar] [CrossRef]
- Knorr, F.; Sanchez, D.G.; Schirmer, J.; Gazdzicki, P.; Friedrich, K.A. Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells. Appl. Energy 2019, 238, 1–10. [Google Scholar] [CrossRef]
- Jiang, F.M.; Wang, C.Y.; Chen, K.S. Current Ramping: A Strategy for Rapid Start-up of PEMFCs from Subfreezing Environment. J. Electrochem. Soc. 2010, 157, B342–B347. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Ju, H. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells. Appl. Energy 2012, 94, 364–374. [Google Scholar] [CrossRef]
- Amamou, A.; Kandidayeni, M.; Boulon, L.; Kelouwani, S. Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells. Appl. Energy 2018, 216, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Tan, Z.T.; Kang, M.; Zhang, Z.Q. Experimental investigation on dynamic characteristics of proton exchange membrane fuel cells at subzero temperatures. Int. J. Hydrog. Energy 2014, 39, 11120–11127. [Google Scholar] [CrossRef]
- Lin, R.; Weng, Y.M.; Li, Y.; Lin, X.W.; Xu, S.C.; Ma, J.X. Internal behavior of segmented fuel cell during cold start. Int. J. Hydrog. Energy 2014, 39, 16025–16035. [Google Scholar] [CrossRef]
- Reddy, E.H.; Jayanti, S. Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Appl. Therm. Eng. 2012, 48, 465–475. [Google Scholar] [CrossRef]
- Jiao, K.; Alaefour, I.E.; Karimi, G.; Li, X.G. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes. Electrochim. Acta 2011, 56, 2967–2982. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Yu, T.; Yi, J.; Liu, Z.T.; Raj, K.A.R.; Xia, L.C.; Tu, Z.K.; Chan, S.H. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system. Energy Convers. Manag. 2016, 129, 36–42. [Google Scholar] [CrossRef]
- Youcai, L.; Sichuan, X.; Zhigang, Y.; Yongxiang, L. Experiment and Simulation Study on Cold Start of Automotive PEMFC. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 2166–2170. [Google Scholar]
- Khandelwal, M.; Lee, S.H.; Mench, M.M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack. J. Power Sources 2007, 172, 816–830. [Google Scholar] [CrossRef]
- Zalba, B.; Marin, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Sasmito, A.P.; Shamim, T.; Mujumdar, A.S. Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM). Appl. Therm. Eng. 2013, 58, 615–625. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, S.X.; Yue, L.K.; Wang, G.Z. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode. Appl. Energy 2019, 254, 113716. [Google Scholar] [CrossRef]
- Yang, Z.R.; Du, Q.; Jia, Z.W.; Yang, C.G.; Jiao, K. Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model. Energy 2019, 183, 462–476. [Google Scholar] [CrossRef]
- Zhang, G.B.; Jiao, K. Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review. J. Power Sources 2018, 391, 120–133. [Google Scholar] [CrossRef]
- Chippar, P.; Ju, H. Evaluating cold-start behaviors of end and intermediate cells in a polymer electrolyte fuel cell (PEFC) stack. Solid State Ionics 2012, 225, 85–91. [Google Scholar] [CrossRef]
- Shaygan, M.; Ehyaei, M.A.; Ahmadi, A.; Assad, M.E.; Silveira, J.L. Energy, exergy, advanced exergy and economic analyses of hybrid polymer electrolyte membrane (PEM) fuel cell and photovoltaic cells to produce hydrogen and electricity. J. Clean. Prod. 2019, 234, 1082–1093. [Google Scholar] [CrossRef]
- Liu, P.; Xu, S. A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System. In Proceedings of the SAE 2020 World Congress Experience, WCX 2020, Detroit, MI, USA, 21–23 April 2020; SAE International: Detroit, MI, USA, 2020. [Google Scholar]
- Mehta, V.; Cooper, J.S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003, 114, 32–53. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.Q.; Zhang, G.; Jermsittiparsert, K.; Nasseri, M. An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Rep. 2020, 6, 530–542. [Google Scholar] [CrossRef]
- Chikahisa, T. Microscopic Observations of Freezing Phenomena in PEM Fuel Cells at Cold Starts. Heat Transf. Eng. 2013, 34, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Analysis of the key parameters in the cold start of polymer electrolyte fuel cells. J. Electrochem. Soc. 2007, 154, B1041–B1048. [Google Scholar] [CrossRef] [Green Version]
- Henao, N.; Kelouwani, S.; Agbossou, K.; Dube, Y. Proton exchange membrane fuel cells cold startup global strategy for fuel cell plugin hybrid electric vehicle. J. Power Sources 2012, 220, 31–41. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Luo, Y.Q.; Yu, S.H.; Jiao, K. Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks. J. Power Sources 2014, 247, 738–748. [Google Scholar] [CrossRef]
- Zhang, G.B.; Wu, J.T.; Wang, Y.; Yin, Y.; Jiao, K. Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. Int. J. Heat Mass Transf. 2020, 150, 119294. [Google Scholar] [CrossRef]
Item | Unit | Value |
---|---|---|
Voltage | V | 100~220 |
Current | A | 0~364 |
Rated voltage | V | 132 |
Rated current | A | 273 |
Rated power | kW | 36 |
Effective membrane area | cm2 | 227 |
Number of pieces | 220 |
Item | Unit | Value |
---|---|---|
Voltage | V | 100~240 |
Current | A | 0~350 |
Rated voltage | V | 160 |
Rated current | A | 225 |
Rated power | kW | 36 |
Effective membrane area | cm2 | 190 |
Number of pieces | 240 |
Control Strategy 1 | Control Strategy 2 | Control Strategy 3 | |
---|---|---|---|
Stack A | |||
Stack B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Xu, S.; Pan, L.; Gao, Y. A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell. Energies 2021, 14, 7301. https://doi.org/10.3390/en14217301
Shen C, Xu S, Pan L, Gao Y. A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell. Energies. 2021; 14(21):7301. https://doi.org/10.3390/en14217301
Chicago/Turabian StyleShen, Chunjuan, Sichuan Xu, Lei Pan, and Yuan Gao. 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell" Energies 14, no. 21: 7301. https://doi.org/10.3390/en14217301
APA StyleShen, C., Xu, S., Pan, L., & Gao, Y. (2021). A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell. Energies, 14(21), 7301. https://doi.org/10.3390/en14217301