Effects of Structural Substituents on the Electrochemical Decomposition of Carbonyl Derivatives and Formation of the Solid–Electrolyte Interphase in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experiment
2.1. Computational Modeling
2.2. Chemicals
2.3. Cell Assembly
2.4. Electrochemical Measurement
2.5. Microscopic Imaging
3. Results and Discussion
3.1. Effects of Substituents on the Oxidation Process
3.2. Effects of Substituents on the Reduction Process
3.3. Cycle Performance of the Graphite/Lithium Half-Cells
3.4. Cycle Performance of the NMC/Graphite Full Cells
4. Summary and Outlook
4.1. Conclusions
4.2. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Funabiki, A.; Inaba, M.; Abe, T.; Ogumi, Z. Stage Transformation of Lithium-Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation. J. Electrochem. Soc. 1999, 146, 2443–2448. [Google Scholar] [CrossRef]
- Peled, E.; Golodnitsky, D.; Ardel, G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210. [Google Scholar] [CrossRef]
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703–A1719. [Google Scholar] [CrossRef]
- Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341. [Google Scholar] [CrossRef]
- Heiskanen, S.; Kim, J.; Lucht, B.L. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 2019, 3, 2322–2333. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Zuo, W.; Cui, Y.; Zhuang, Q.; Shi, Y.; Ying, P.; Cui, Y. Effect of N-N Dimethyltrifluoroacetamide Additive on Low Temperature Performance of Graphite Anode. Int. J. Electrochem. Sci. 2020, 15, 382–393. [Google Scholar] [CrossRef]
- Zhao, L.; Jing, D.; Shi, Y.; Zhuang, Q.; Cui, Y.; Ju, Z.; Cui, Y. TriMethylene sulfite as a novel additive for SEI film formation in lithium-ion batteries. Ionics 2020, 26, 4813–4824. [Google Scholar] [CrossRef]
- Edstroem, K.; Herstedt, M.; Abraham, D.P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources 2006, 153, 380–384. [Google Scholar] [CrossRef]
- Lu, P.; Li, C.; Schneider, E.W.; Harris, S.J. Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries. J. Phys. Chem. C 2014, 118, 896–903. [Google Scholar] [CrossRef]
- Takenaka, N.; Suzuki, Y.; Sakai, H.; Nagaoka, M. On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules. J. Phys. Chem. C 2014, 118, 10874–10882. [Google Scholar] [CrossRef]
- Michan, A.L.; Parimalam, B.S.; Leskes, M.; Kerber, R.N.; Yoon, T.; Grey, C.; Lucht, B.L. Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chem. Mater. 2016, 28, 8149–8159. [Google Scholar] [CrossRef]
- Schwenke, K.U.; Soc, J.E.; Schwenke, K.U.; Solchenbach, S.; Gasteiger, H.A.; Demeaux, J.; Lucht, B.L. The Impact of CO 2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. The Impact of CO 2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2019, 166, A2035. [Google Scholar] [CrossRef]
- Shkrob, I.A.; Zhu, Y.; Marin, T.W.; Abraham, D. Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate. J. Phys. Chem. C 2013, 117, 19270–19279. [Google Scholar] [CrossRef]
- Korepp, C.; Kern, W.; Lanzer, E.; Raimann, P.; Besenhard, J.; Yang, M.; Möller, K.-C.; Shieh, D.-T.; Winter, M. Isocyanate compounds as electrolyte additives for lithium-ion batteries. J. Power Sources 2007, 174, 387–393. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Wang, Z.; Zhang, H. Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: P-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 2017, 34, 131–140. [Google Scholar] [CrossRef]
- Zuo, X.; Deng, X.; Ma, X.; Wu, J.; Liang, H.; Nan, J. 3-(Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14725–14733. [Google Scholar] [CrossRef]
- Shi, J.; Ehteshami, N.; Ma, J.; Zhang, H.; Liu, H.; Zhang, X.; Li, J.; Paillard, E. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive. J. Power Sources 2019, 429, 67–74. [Google Scholar] [CrossRef]
- Li, Z.; Lin, X.; Zhou, H.; Xing, L.; Lan, G.; Zhang, W.; Chen, J.; Liu, M.; Huang, Q.; Li, W. Stabilizing the interphasial layer of Ni-rich cathode and graphite anode for lithium ion battery with multifunctional additive. J. Power Sources 2020, 467, 228343. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Li, J.; Wang, E.; Liu, T.; Wang, G.; Sun, K.; Liu, C.; Peng, Z. Reversible Cycling of Graphite Electrodes in Propylene Carbonate Electrolytes Enabled by Ethyl Isothiocyanate. ACS Appl. Mater. Interfaces 2021, 13, 26023–26033. [Google Scholar] [CrossRef]
- Nie, M.; Demeaux, J.; Young, B.; Heskett, D.R.; Chen, Y.; Bose, A.; Woicik, J.C.; Lucht, B.L. Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. J. Electrochem. Soc. 2015, 162, A7008–A7014. [Google Scholar] [CrossRef] [Green Version]
- Winkler, V.; Hanemann, T.; Bruns, M. Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition. Surf. Interface Anal. 2017, 49, 361–369. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuang, Q.; Xu, S.; Xu, Y.; Shi, Y.; Zhang, X. A New Insight into the Content Effect of Fluoroethylene Carbonate as a Film Forming Additive for Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2015, 10, 2515–2534. [Google Scholar]
- Chang, C.-C.; Hsu, S.-H.; Jung, Y.-F.; Yang, C.-H. Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery. J. Power Sources 2011, 196, 9605–9611. [Google Scholar] [CrossRef]
- Jung, H.M.; Park, S.-H.; Jeon, J.; Choi, Y.; Yoon, S.; Cho, J.-J.; Oh, S.; Kang, S.; Han, Y.-K.; Lee, H. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. J. Mater. Chem. A 2013, 1, 11975–11981. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Zhao, K.; Li, J.; Yang, Y.; Jia, G. Improving the rate performance and stability of LiNi0.6Co0.2Mn0.2O2 in high voltage lithium-ion battery by using fluoroethylene carbonate as electrolyte additive. Ionics 2018, 24, 3337–3346. [Google Scholar] [CrossRef]
- Shin, H.; Park, J.; Sastry, A.M.; Lu, W. Effects of Fluoroethylene Carbonate (FEC) on Anode and Cathode Interfaces at Elevated Temperatures. J. Electrochem. Soc. 2015, 162, A1683–A1692. [Google Scholar] [CrossRef] [Green Version]
- Ufheil, J.; Baertsch, M.C.; Würsig, A.; Novák, P. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005, 50, 1733–1738. [Google Scholar] [CrossRef]
- Santner, H.; Möller, K.-C.; Ivančo, J.; Ramsey, M.; Netzer, F.; Yamaguchi, S.; Besenhard, J.; Winter, M. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J. Power Sources 2003, 119–121, 368–372. [Google Scholar] [CrossRef]
- Korepp, C.; Santner, H.; Fujii, T.; Ue, M.; Besenhard, J.; Möller, K.-C.; Winter, M. 2-Cyanofuran—A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. J. Power Sources 2006, 158, 578–582. [Google Scholar] [CrossRef]
- Yong, T.; Wang, J.; Mai, Y.; Tang, D.; Zhang, L. Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries. Ionics 2013, 19, 1099–1103. [Google Scholar] [CrossRef]
- Liu, W.; Shi, Y.; Zhuang, Q.; Cuiab, Y.; Ju, Z.; Cui, Y. Ethylene Glycol Bis(Propionitrile) Ether as an Additive for SEI Film Formation in Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2020, 15, 4722–4738. [Google Scholar] [CrossRef]
- Korepp, C.; Kern, W.; Lanzer, E.; Raimann, P.; Besenhard, J.; Yang, M.; Möller, K.-C.; Shieh, D.-T.; Winter, M. Ethyl isocyanate—An electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries. J. Power Sources 2007, 174, 628–631. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem. Commun. 2007, 9, 801–806. [Google Scholar] [CrossRef]
- Xu, M.; Zuo, X.; Li, W.; Zhou, H.; Liu, J.; Yuan, Z. Effect of Butyl Sultone on the Li-ion Battery Performance and Interface of Graphite Electrode. Acta Phys.-Chim. Sin. 2006, 22, 335–340. [Google Scholar] [CrossRef]
- Mai, S.; Xu, M.; Wang, Y.; Liao, X.; Lin, H.; Li, W. Methylene methanedisulfonate (MMDS) as a novel SEI forming additive on anode for lithium ion batteries. Int. J. Electrochem. Sci. 2014, 9, 6294–6304. [Google Scholar]
- Högström, K.C.; Hahlin, M.; Malmgren, S.; Gorgoi, M.; Rensmo, H.; Edström, K. Aging of Electrode/Electrolyte Interfaces in LiFePO4/Graphite Cells Cycled with and without PMS Additive. J. Phys. Chem. C 2014, 118, 12649–12660. [Google Scholar] [CrossRef]
- Ershadi, M.; Javanbakht, M.; Beheshti, S.H.R.; Mosallanejad, B.; Kiaei, Z. A patent landscape on liquid electrolytes for lithium-ion batteries. Anal. Bioanal. Electrochem. 2018, 10, 1629–1653. [Google Scholar]
- Strehle, B.; Solchenbach, S.; Metzger, M.; Schwenke, K.U.; Gasteiger, H.A. The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A2513–A2526. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Kim, H.; Cho, J.-J.; Han, Y.-K.; Lee, H. Lactam derivatives as solid electrolyte interphase forming additives for a graphite anode of lithium-ion batteries. J. Power Sources 2013, 244, 711–715. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P.C.; Curtiss, L.A.; Amine, K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 2013, 6, 1806–1810. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Khasanov, M.; Pazhetnov, E.; Shin, W.C. Dicarboxylate-Substituted Ethylene Carbonate as an SEI-Forming Additive for Lithium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1892–A1898. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.S.; Lee, H.; Han, Y.-K. Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J. Power Sources 2011, 196, 5109–5114. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Smith, K.; Jervis, R.; Shearing, P.R.; Miller, T.S.; Brett, D.J.L. Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. ACS Appl. Mater. Interfaces 2020, 12, 35132–35141. [Google Scholar] [CrossRef]
- Bugga, R.V.; Smart, M.C. Lithium Plating Behavior in Lithium-Ion Cells. ECS Trans. 2010, 25, 241–252. [Google Scholar] [CrossRef]
- Smart, M.C.; Ratnakumar, B.V. Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells. J. Electrochem. Soc. 2011, 158, A379–A389. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beheshti, S.H.; Javanbakht, M.; Omidvar, H.; Behi, H.; Zhu, X.; Mamme, M.H.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Effects of Structural Substituents on the Electrochemical Decomposition of Carbonyl Derivatives and Formation of the Solid–Electrolyte Interphase in Lithium-Ion Batteries. Energies 2021, 14, 7352. https://doi.org/10.3390/en14217352
Beheshti SH, Javanbakht M, Omidvar H, Behi H, Zhu X, Mamme MH, Hubin A, Van Mierlo J, Berecibar M. Effects of Structural Substituents on the Electrochemical Decomposition of Carbonyl Derivatives and Formation of the Solid–Electrolyte Interphase in Lithium-Ion Batteries. Energies. 2021; 14(21):7352. https://doi.org/10.3390/en14217352
Chicago/Turabian StyleBeheshti, S. Hamidreza, Mehran Javanbakht, Hamid Omidvar, Hamidreza Behi, Xinhua Zhu, Mesfin Haile Mamme, Annick Hubin, Joeri Van Mierlo, and Maitane Berecibar. 2021. "Effects of Structural Substituents on the Electrochemical Decomposition of Carbonyl Derivatives and Formation of the Solid–Electrolyte Interphase in Lithium-Ion Batteries" Energies 14, no. 21: 7352. https://doi.org/10.3390/en14217352
APA StyleBeheshti, S. H., Javanbakht, M., Omidvar, H., Behi, H., Zhu, X., Mamme, M. H., Hubin, A., Van Mierlo, J., & Berecibar, M. (2021). Effects of Structural Substituents on the Electrochemical Decomposition of Carbonyl Derivatives and Formation of the Solid–Electrolyte Interphase in Lithium-Ion Batteries. Energies, 14(21), 7352. https://doi.org/10.3390/en14217352