Estimation of Prediction Error in Regression Air Quality Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Monitoring Data
- EN 14625:2012: Ambient Air—Standard method for the measurement of the concentration of ozone by ultraviolet photometry [32];
- EN 14211:2012: Ambient air—Standard method for the measurement of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescence [33];
- EN 14212:2012: Ambient air—Standard method for the measurement of the concentration of sulfur dioxide by ultraviolet fluorescence [34];
- EN 14626:2012: Ambient Air—Standard method for the measurement of the concentration of carbon monoxide by non-dispersive infrared spectroscopy [35];
- EN12341:2014: Ambient Air—standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter [36].
- D -day
- H -hour
- O3 -hourly O3 concentration, µg/m3
- NO -hourly NO concentration, µg/m3
- NO2 -hourly NO2 concentration, µg/m3
- SO2 -hourly SO2 concentration, µg/m3
- PM10 -hourly concentration of PM10, µg/m3
- CO -hourly CO concentration, mg/m3
- T -hourly mean temperature, °C
- I -the hourly mean intensity of solar radiation, W/m2
- WS -hourly mean wind speed, m/s.
2.2. Transformation of Time Data
2.3. Regression Models Concept
2.4. Artificial Neural Networks
2.5. Estimation of Prediction Error
3. Results
3.1. Modelling of O3 Concentrations
3.2. Modelling of NO Concentrations
3.3. Modelling of NO2 Concentrations
3.4. Modelling of SO2 Concentrations
3.5. Modelling of PM10 Concentrations
3.6. Modelling of CO Concentrations
3.7. The Comparison of Real and Predicted Concentrations
4. Discussion
5. Conclusions
- The use of a single measure of the approximation accuracy may lead to incorrect interpretation, especially when the measures refer in their formulas to the averages and the distances from averages. Such measures include Pearson’s correlation coefficient r and Willmott’s indexes of agreement d, d1.
- Measures like MAE, MSE, RMSE properly reflect the difficulties in modeling the concentrations in the entire range as well as in different subranges of concentrations.
- The average relative errors like MARE cannot be recommended for assessing the accuracies of autonomous models.
- The application of one neural network to the entire concentration range results in different prediction accuracy in various concentration subranges It is advisable to replace one neural network with several networks (submodels) adapted to specific concentration subranges. An entire-range model can be used initially to obtain predicted concentrations, and then the initially predicted concentration values can be classified into individual subranges and modeled more precisely in submodels.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, P. Airborne Particles: Origin, Emissions and Health Impacts; Nova Science Publisher’s, Inc.: Hauppauge, NY, USA, 2017. [Google Scholar]
- Hoffmann, B.; Roebbel, N.; Gumy, S.; Forastiere, F.; Brunekreef, B.; Jarosinska, D.; Walker, K.D.; Van Erp, A.M.; O’Keefe, R.; Greenbaum, D.; et al. Air Pollution and Health: Recent Advances in Air Pollution Epidemiology to Inform the European Green Deal: A joint workshop report of ERS, WHO, ISEE and HEI. Eur. Respir. J. 2020, 56, 2002575. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, B.R.; Molina, L.T.; Ojha, C.S.P. Air Pollution: Health and Environmental Impacts; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Adamkiewicz, G.; Liddie, J.; Gaffin, J.M. The Respiratory Risks of Ambient/Outdoor Air Pollution. Clin. Chest Med. 2020, 41, 809–824. [Google Scholar] [CrossRef]
- Finicelli, M.; Squillaro, T.; Galderisi, U.; Peluso, G. Crossroads Between the Exposure to Environmental Particulate Pollution and the Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2020, 21, 7221. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; et al. Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood. JAMA Psychiatry 2015, 72, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Manley, J.; Radoias, V. Air Pollution and Long Term Mental Health. Atmosphere 2020, 11, 1355. [Google Scholar] [CrossRef]
- Chang, T.; Zivin, J.G.; Gross, T.; Neidell, M. Particulate Pollution and the Productivity of Pear Packers. Am. Econ. J. Econ. Policy 2016, 8, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Graff-Zivin, J.; Neidell, M. The Impact of Pollution on Worker Productivity. Am. Econ. Rev. 2012, 102, 3652–3673. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.; Oliva, P. The Effect of Pollution on Labor Supply: Evidence from a Natural Experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Aragon, F.; Miranda, J.; Oliva, P. Particulate Matter and Labor Supply: The Role of Caregiving and Non-linearities. J. Environ. Econ. Manag. 2017, 86, 295–309. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. Available online: www.who.int/mediacentre/news/releases/2014/air-pollution/en (accessed on 29 April 2021).
- Maesano, I. The Air of Europe: Where Are We Going? Eur. Respir. Rev. 2017, 26, 170024. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Air Quality in Europe-2020 Report. No. 12/2018; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Ministry of Climate and Environment (Polish Government). Regulation on the Evaluation of Levels of Substances in the Air. 11 December 2020. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200002279 (accessed on 30 September 2021). (In Polish)
- Plaia, A.; Bondi, A.L. Single Imputation Method of Missing Values in Environmental Pollution Data Sets. Atmos. Environ. 2006, 40, 7316–7330. [Google Scholar] [CrossRef]
- Gentili, S.; Magnaterra, L.; Passerini, G. Handling Missing Data: Applications to Environmental Analysis; Latini, G., Passerini, G., Eds.; Wit Press: Southampton, UK, 2004. [Google Scholar]
- Hoffman, S. Environmental Engineering; Pawłowski, L., Dudzińska, M.R., Pawłowski, A., Eds.; Taylor & Francis Group: London, UK, 2007; pp. 349–353. [Google Scholar]
- Hoffman, S. Approximation of Imission Level at Air Monitoring Stations by Means of Autonomous Neural Models. Environ. Prot. Eng. 2012, 38, 109–119. [Google Scholar] [CrossRef]
- Milionis, A.E.; Davies, T.D. Regression and Stochastic Models for Air Pollution-I. Review, Comments and Suggestions. Atmos. Environ. 1994, 28, 2801–2810. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)––A Review of Applications in the Atmospheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Venkatram, A. Computing and Displaying Model Performance Statistics. Atmos. Environ. 2008, 42, 6862–6868. [Google Scholar] [CrossRef]
- Mouton, A.M.; De Baets, B.; Goethals, P.L.M. Ecological Relevance of Performance Criteria for Species Distribution Models. Ecol. Model. 2010, 221, 1995–2002. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2011, 32, 2088–2094. [Google Scholar] [CrossRef]
- Dorling, S.R.; Gardner, M.W. Statistical Surface Ozone Models: An Improved Methodology to Account for Non-linear Behaviour. Atmos. Environ. 2000, 34, 21–34. [Google Scholar] [CrossRef]
- Karppinen, A.; Kukkonen, J.; Elolähde, T.; Konttinen, M.; Koskentalo, T.; Rantakrans, E. A Modelling System for Predicting Urban Air Pollution: Comparison of Model Predictions with the Data of an Urban Measurement Network in Helsinki. Atmos. Environ. 2000, 34, 3735–3743. [Google Scholar] [CrossRef]
- Nagendra, S.S.M.; Khare, M. Modelling Urban Air Quality Using Artificial Neural Network. Clean. Technol. Environ. Policy 2005, 7, 116–126. [Google Scholar] [CrossRef]
- Hoffman, S. Assessment of Prediction Accuracy in Autonomous Air Quality Models. Desalination Water Treat. 2015, 57, 1322–1326. [Google Scholar] [CrossRef]
- The European Parliament and The Council of the European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Off. J. Eur. Union 2008, 152, 1–44. [Google Scholar]
- EN 14625:2012; Ambient Air—Standard Method for the Measurement of the Concentration of Ozone by Ultraviolet Photometry.
- EN 14211:2012; Ambient Air—Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chemiluminescence.
- EN 14212:2012; Ambient Air—Standard Method for the Measurement of the Concentration of Sulphur Dioxide by Ultraviolet Fluorescence.
- EN 14626:2012; Ambient Air—Standard Method for the Measurement of the Concentration of Carbon Monoxide by Non-dispersive Infrared Spectroscopy.
- EN 12341:2014; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter.
- Hoffman, S. Application of Neural Networks in Regression Modelling of Air Pollution Concentrations; Wydawnictwa Politechniki Częstochowskiej: Częstochowa, Poland, 2004. (In Polish) [Google Scholar]
- Trenchevski, A.; Kalendar, M.; Gjoreski, H.; Efnusheva, D. Prediction of Air Pollution Concentration Using Weather Data and Regression Models. In Proceedings of the 8th International Conference on Applied Innovations in IT, (ICAIIT); Issue 1, Siemens, E., Mylnikov, L., Eds.; Anhalt University of Applied Sciences; Perm National Research Polytechnic University: Koethen, Germany, 2020; Volume 8. [Google Scholar]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Birgani, Y.T.; Rahmati, M. Air pollution prediction by using an artificial neural network model. Clean Technol. Environ. Policy 2019, 21, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
Predicted Variable (Output) | Predictors (Inputs) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
G | D | O3 | NO | NO2 | CO | SO2 | PM10 | WS | T | I | |
O3 | + | + | + | + | + | + | + | + | + | + | |
NO | + | + | + | + | + | + | + | + | + | + | |
NO2 | + | + | + | + | + | + | + | + | + | + | |
CO | + | + | + | + | + | + | + | + | + | + | |
SO2 | + | + | + | + | + | + | + | + | + | + | |
PM10 | + | + | + | + | + | + | + | + | + | + |
Subranges of O3,obs Concentrations g/m3 | Number of Observations | O3,obs Average Concentration in the Subrange g/m3 | O3,pred Average Concentration in the Subrange g/m3 | MAE μg/m3 | MSE (μg/m3)2 | RMSE μg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0 ÷ 20 | 7881 | 8.9 | 13.6 | 6.7 | 86.4 | 9.3 | 1.082 | 0.542 | 0.602 | 0.445 |
20 ÷ 40 | 5626 | 29.6 | 32.2 | 8.7 | 125.4 | 11.2 | 0.306 | 0.351 | 0.530 | 0.388 |
40 ÷ 60 | 5201 | 49.4 | 47.3 | 9.3 | 139.6 | 11.8 | 0.190 | 0.357 | 0.521 | 0.373 |
60 ÷ 80 | 3429 | 68.7 | 63.6 | 12.0 | 221.5 | 14.9 | 0.175 | 0.346 | 0.458 | 0.327 |
80 ÷ 100 | 1834 | 88.9 | 83.7 | 11.9 | 242.6 | 15.6 | 0.135 | 0.354 | 0.443 | 0.323 |
100 ÷ 120 | 905 | 108.6 | 101.7 | 12.9 | 266.0 | 16.3 | 0.118 | 0.279 | 0.419 | 0.307 |
120 ÷ 140 | 443 | 127.9 | 117.7 | 14.3 | 324.0 | 18.0 | 0.112 | 0.208 | 0.339 | 0.236 |
140 ÷ 160 | 144 | 147.9 | 134.8 | 14.4 | 312.4 | 17.7 | 0.097 | 0.356 | 0.385 | 0.267 |
160 ÷ 180 | 59 | 166.7 | 145.2 | 21.4 | 511.5 | 22.6 | 0.128 | 0.389 | 0.275 | 0.153 |
180 ÷ 200 | 5 | 188.9 | 151.1 | 37.8 | 1539.8 | 39.2 | 0.199 | −0.337 | 0.230 | 0.137 |
0 ÷ 200 | 25 523 | 42.3 | 42.3 | 9.2 | 148.2 | 12.2 | 0.480 | 0.927 | 0.961 | 0.817 |
Subranges of NOobs Concentrations g/m3 | Number of Observations | NOobs Average Concentration in the Subrange g/m3 | NOpred Average Concentration in the Subrange g/m3 | MAE μg/m3 | MSE (μg/m3)2 | RMSE μg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0 ÷ 20 | 22,339 | 4.1 | 4.6 | 2.3 | 17.8 | 4.2 | 0.731 * | 0.707 | 0.802 | 0.651 |
20 ÷ 40 | 1679 | 28.1 | 27.8 | 9.2 | 138.6 | 11.8 | 0.330 | 0.351 | 0.521 | 0.373 |
40 ÷ 60 | 670 | 48.3 | 42.4 | 14.2 | 324.4 | 18.0 | 0.291 | 0.299 | 0.400 | 0.285 |
60 ÷ 80 | 329 | 68.3 | 55.9 | 19.9 | 591.0 | 24.3 | 0.289 | 0.053 | 0.264 | 0.192 |
80 ÷ 100 | 170 | 88.3 | 77.2 | 26.2 | 1013.8 | 31.8 | 0.297 | 0.235 | 0.251 | 0.178 |
100 ÷ 120 | 110 | 109.5 | 91.0 | 30.1 | 1320.1 | 36.3 | 0.275 | 0.193 | 0.222 | 0.159 |
120 ÷ 140 | 73 | 128.9 | 116.3 | 28.8 | 1310.4 | 36.2 | 0.224 | 0.200 | 0.221 | 0.164 |
140 ÷ 160 | 41 | 148.3 | 122.3 | 34.4 | 1719.0 | 41.5 | 0.233 | 0.222 | 0.194 | 0.134 |
160 ÷ 180 | 28 | 170.0 | 164.8 | 31.3 | 1301.0 | 36.1 | 0.184 | 0.137 | 0.208 | 0.138 |
180 ÷ 200 | 28 | 189.2 | 168.1 | 33.9 | 1640.7 | 40.5 | 0.178 | −0.323 | 0.117 | 0.085 |
200 ÷ 572 | 56 | 286.4 | 248.9 | 51.1 | 3927.5 | 62.7 | 0.196 | 0.883 | 0.892 | 0.689 |
0 ÷ 572 | 25,523 | 10.2 | 10.1 | 3.9 | 71.7 | 8.5 | 0.676 * | 0.933 | 0.965 | 0.829 |
Subranges of NO2,obs Concentrations g/m3 | Number of Observations | NO2, obs Average Concentration in the Subrange g/m3 | NO2,pred Average Concentration in the Subrange g/m3 | MAE μg/m3 | MSE (μg/m3)2 | RMSE μg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0÷20 | 12,501 | 11.5 | 13.8 | 3.8 | 26.1 | 5.1 | 0.405 | 0.634 | 0.737 | 0.551 |
20÷40 | 8902 | 28.4 | 28.8 | 6.1 | 60.4 | 7.8 | 0.217 | 0.504 | 0.673 | 0.492 |
40÷60 | 3119 | 47.5 | 42.6 | 8.3 | 104.0 | 10.2 | 0.174 | 0.381 | 0.536 | 0.374 |
60÷80 | 768 | 67.6 | 56.1 | 13.8 | 273.4 | 16.5 | 0.203 | 0.331 | 0.398 | 0.273 |
80÷100 | 177 | 86.9 | 66.9 | 21.6 | 614.4 | 24.8 | 0.247 | 0.138 | 0.252 | 0.168 |
100÷120 | 44 | 107.8 | 79.9 | 28.4 | 1121.2 | 33.5 | 0.264 | 0.355 | 0.240 | 0.154 |
120÷140 | 12 | 128.8 | 78.0 | 50.9 | 3318.7 | 57.6 | 0.396 | 0.216 | 0.131 | 0.086 |
0÷140 | 25,523 | 24.2 | 24.3 | 5.6 | 62.5 | 7.9 | 0.304 | 0.881 | 0.933 | 0.772 |
Subranges of SO2,obs Concentrations g/m3 | Number of Observations | SO2,obs Average Concentration in the Subrange g/m3 | SO2,pred Average Concentration in the Subrange g/m3 | MAE μg/m3 | MSE (μg/m3)2 | RMSE μg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0 ÷ 10 | 12,842 | 5.2 | 7.5 | 3.0 | 18.0 | 4.2 | 0.813 | 0.389 | 0.504 | 0.374 |
10 ÷ 20 | 5652 | 14.0 | 14.2 | 4.8 | 39.5 | 6.3 | 0.344 | 0.351 | 0.506 | 0.375 |
20 ÷ 30 | 2952 | 24.3 | 22.9 | 7.1 | 78.8 | 8.9 | 0.292 | 0.272 | 0.396 | 0.284 |
30 ÷ 40 | 1825 | 34.3 | 31.4 | 8.6 | 119.5 | 10.9 | 0.252 | 0.223 | 0.325 | 0.235 |
40 ÷ 50 | 1029 | 44.2 | 39.6 | 10.1 | 170.9 | 13.1 | 0.229 | 0.186 | 0.272 | 0.205 |
50 ÷ 60 | 566 | 54.0 | 47.7 | 12.4 | 235.1 | 15.3 | 0.229 | 0.171 | 0.243 | 0.172 |
60 ÷ 70 | 348 | 64. 3 | 55.9 | 14.1 | 306.9 | 17.5 | 0.220 | 0.159 | 0.217 | 0.157 |
70 ÷ 80 | 216 | 74.6 | 64.1 | 16.7 | 422.1 | 20.5 | 0.224 | 0.070 | 0.175 | 0.127 |
80 ÷ 90 | 136 | 83.8 | 69.6 | 19.4 | 567.0 | 23.8 | 0.232 | 0.114 | 0.147 | 0.114 |
90 ÷ 100 | 91 | 94.5 | 83.4 | 19.4 | 575.2 | 24.0 | 0.206 | 0.025 | 0.158 | 0.128 |
100 ÷ 200 | 214 | 127.6 | 107.8 | 27.5 | 1383.8 | 37.2 | 0.212 | 0.493 | 0.620 | 0.480 |
200 ÷ 308 | 12 | 227.2 | 195.2 | 34.9 | 1624.4 | 40.3 | 0.149 | 0.641 | 0.574 | 0.386 |
0 ÷ 308 | 25,523 | 17.4 | 17.3 | 5.4 | 72.5 | 8.5 | 0.549 | 0.904 | 0.948 | 0.789 |
Subranges of PM10, obs Concentrations g/m3 | Number of Observations | PM10,obs Average Concentration in the Subrange g/m3 | PM10,pred Average Concentration in the Subrange g/m3 | MAE μg/m3 | MSE (μg/m3)2 | RMSE μg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0 ÷ 20 | 6112 | 13.2 | 21.8 | 8.7 | 114.1 | 10.7 | 0.951 | 0.277 | 0.395 | 0.282 |
20 ÷ 40 | 8859 | 28.8 | 30.5 | 6.9 | 89.3 | 9.5 | 0.243 | 0.374 | 0.562 | 0.426 |
40 ÷ 60 | 4468 | 48.3 | 45.0 | 11.6 | 209.4 | 14.5 | 0.239 | 0.318 | 0.458 | 0.327 |
60 ÷ 80 | 2146 | 68.9 | 63.9 | 16.5 | 412.1 | 20.3 | 0.240 | 0.272 | 0.370 | 0.259 |
80 ÷ 100 | 1111 | 88.8 | 84.2 | 19.0 | 579.6 | 24.1 | 0.214 | 0.227 | 0.319 | 0.233 |
100 ÷ 120 | 770 | 108.9 | 102.1 | 22.2 | 781.4 | 28.0 | 0.203 | 0.178 | 0.264 | 0.191 |
120 ÷ 140 | 565 | 128.8 | 122.5 | 25.4 | 1013.4 | 31.8 | 0.197 | 0.123 | 0.220 | 0.163 |
140 ÷ 160 | 361 | 149.8 | 141.2 | 29.3 | 1396.7 | 37.4 | 0.195 | −0.020 | 0.155 | 0.120 |
160 ÷ 180 | 254 | 169.2 | 161.3 | 33.3 | 1676.0 | 40.9 | 0.197 | 0.128 | 0.180 | 0.127 |
180 ÷ 200 | 198 | 188.5 | 178.3 | 33.3 | 1846.3 | 43.0 | 0.176 | 0.313 | 0.218 | 0.168 |
200 ÷ 400 | 560 | 262.7 | 243.4 | 42.8 | 2903.0 | 53.9 | 0.165 | 0.662 | 0.777 | 0.571 |
400 ÷ 600 | 78 | 481.7 | 445.5 | 81.7 | 10,393.8 | 102.0 | 0.169 | 0.550 | 0.626 | 0.449 |
600 ÷ 800 | 34 | 689.1 | 649.2 | 77.0 | 10,356.4 | 101.8 | 0.114 | 0.425 | 0.494 | 0.326 |
800 ÷ 1000 | 6 | 884.2 | 791.5 | 92.7 | 11,590.8 | 107.7 | 0.101 | 0.607 | 0.503 | 0.374 |
0 ÷ 1000 | 25,523 | 51.1 | 51.3 | 12.3 | 363.6 | 19.1 | 0.404 | 0.948 | 0.973 | 0.818 |
Subranges of COobs Concentrations mg/m3 | Number of Observations | COobs Average Concentration in the Subrange mg/m3 | COpred Average Concentration in the Subrange mg/m3 | MAE mg/m3 | MSE (mg/m3)2 | RMSE mg/m3 | MARE | r | d | d1 |
---|---|---|---|---|---|---|---|---|---|---|
0÷1 | 21,935 | 0.426 | 0.447 | 0.093 | 0.017 | 0.131 | 0.256 | 0.806 | 0.892 | 0.713 |
1÷2 | 3303 | 1.536 | 1.433 | 0.260 | 0.112 | 0.335 | 0.174 | 0.804 | 0.878 | 0.677 |
2÷3 | 511 | 2.391 | 2.236 | 0.355 | 0.196 | 0.443 | 0.148 | 0.523 | 0.646 | 0.464 |
3÷4 | 168 | 3.424 | 3.056 | 0.599 | 0.712 | 0.844 | 0.179 | 0.482 | 0.445 | 0.317 |
4÷5 | 55 | 4.321 | 3.699 | 0.870 | 1.740 | 1.319 | 0.206 | 0.439 | 0.286 | 0.247 |
5÷6 | 16 | 5.396 | 5.270 | 0.596 | 0.487 | 0.698 | 0.110 | 0.899 | 0.706 | 0.473 |
6÷7 | 16 | 6.601 | 6.307 | 0.696 | 0.692 | 0.832 | 0.106 | 0.448 | 0.471 | 0.324 |
7÷8 | 25 | 7.431 | 7.298 | 0.421 | 0.266 | 0.516 | 0.056 | −0.012 | 0.388 | 0.301 |
8÷9 | 5 | 8.402 | 7.788 | 0.614 | 0.439 | 0.662 | 0.073 | 0.444 | 0.417 | 0.262 |
0÷9 | 25,523 | 0.615 | 0.615 | 0.121 | 0.039 | 0.197 | 0.244 | 0.947 | 0.972 | 0.832 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, S. Estimation of Prediction Error in Regression Air Quality Models. Energies 2021, 14, 7387. https://doi.org/10.3390/en14217387
Hoffman S. Estimation of Prediction Error in Regression Air Quality Models. Energies. 2021; 14(21):7387. https://doi.org/10.3390/en14217387
Chicago/Turabian StyleHoffman, Szymon. 2021. "Estimation of Prediction Error in Regression Air Quality Models" Energies 14, no. 21: 7387. https://doi.org/10.3390/en14217387
APA StyleHoffman, S. (2021). Estimation of Prediction Error in Regression Air Quality Models. Energies, 14(21), 7387. https://doi.org/10.3390/en14217387