Magnetic Coupling-Based Battery Impedance Measurement Method
Abstract
:1. Introduction
2. Principle of Battery Resistance Measurement
2.1. Simplified Electrical Battery Model
2.2. Measurement Principle
2.3. Error Signal Analysis
3. DFT-Based Estimation of Damped Oscillation Parameters
3.1. DFT-Based Calculation Method
3.2. Constraint Range of Measurement Object
3.3. Detection Error of Battery Resistance
4. Experiment Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yilmaz, M.; Krein, P.T. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Trans. Power Electron. 2013, 5, 2151–2169. [Google Scholar] [CrossRef]
- Hsu, R.C.; Liu, C.; Chan, D. A Reinforcement-Learning-Based Assisted Power Management with QoR Provisioning for Human–Electric Hybrid Bicycle. IEEE Trans. Ind. Electron. 2012, 8, 3350–3359. [Google Scholar] [CrossRef]
- Brush, L.C. Portable devices emerging power solutions. EDN Power Supplement, November 2003; 23–26. [Google Scholar]
- Velasco de la Fuente, D.; Trujillo Rodríguez, C.L.; Garcerá, G.; Figueres, E.; Ortega Gonzalez, R. Photovoltaic Power System with Battery Backup with Grid-Connection and Islanded Operation Capabilities. IEEE Trans. Ind. Electron. 2013, 4, 1571–1581. [Google Scholar] [CrossRef]
- Teleke, S.; Baran, M.E.; Huang, A.Q.; Bhattacharya, S.; Anderson, L. Control Strategies for Battery Energy Storage for Wind Farm Dispatching. IEEE Trans. Energy Convers. 2009, 3, 725–732. [Google Scholar] [CrossRef]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans. Energy Convers. 2006, 2, 504–511. [Google Scholar] [CrossRef]
- Einhorn, M.; Conte, F.V.; Kral, C.; Fleig, J. Comparison, Selection, and Parameterization of Electrical Battery Models for Automotive Applications. IEEE Trans. Power Electron. 2013, 3, 1429–1437. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Peng, H.; Hu, X. An electrochemistry based impedance model for lithium ion batteries. J. Power Sources 2014, 258, 9–18. [Google Scholar] [CrossRef]
- Lee, Y.; Park, S.; Han, S. Online Embedded Impedance Measurement Using High-Power Battery Charger. IEEE Trans. Ind. Appl. 2015, 1, 498–508. [Google Scholar] [CrossRef]
- Howey, D.A.; Mitcheson, P.D.; Yufit, V.; Offer, G.J.; Brandon, N.P. Online Measurement of Battery Impedance Using Motor Controller Excitation. IEEE Trans. Veh. Technol. 2014, 6, 2557–2566. [Google Scholar] [CrossRef]
- Buller, S.; Thele, M.; De Doncker, R.W.A.A.; Karden, E. Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. IEEE Trans. Ind. Appl. 2005, 3, 742–747. [Google Scholar] [CrossRef]
- Huang, W.; Abu Qahouq, J.A. An Online Battery Impedance Measurement Method Using DC–DC Power Converter Control. IEEE Trans. Ind. Electron. 2014, 11, 5987–5995. [Google Scholar] [CrossRef]
- Carkhuff, B.G.; Demirev, P.A.; Srinivasan, R. Impedance-Based Battery Management System for Safety Monitoring of Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2018, 8, 6497–6504. [Google Scholar] [CrossRef]
- Dai, X.; Sun, Y.; Tang, C.; Wang, Z.; Su, Y.; Li, Y. Dynamic parameters identification method for inductively coupled power transfer system. In Proceedings of the IEEE International Conference on Sustainable Energy Technologies, Kandy, Sri Lanka, 6–9 December 2010; pp. 1–5. [Google Scholar]
- Hu, S.; Liang, Z.; Wang, Y.; Zhou, J.; He, X. Principle and Application of the Contactless Load Detection Based on the Amplitude Decay Rate in a Transient Process. IEEE Trans. Power Electron. 2017, 11, 8936–8944. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Sun, Y.; Tang, C.; Lv, X. Load Detection Model of Voltage-Fed Inductive Power Transfer System. IEEE Trans. Power Electron. 2013, 11, 5233–5243. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, H.; Wang, Z.; Hu, A.P.; Chen, L.; Sun, Y. Steady-state load identification method of inductive power transfer system based on switching capacitors. IEEE Trans. Power Electron. 2015, 11, 6349–6355. [Google Scholar] [CrossRef]
- Duda, K.; Magalas, L.B.; Majewski, M.; Zielinski, T.P. DFT-based Estimation of Damped Oscillation Parameters in Low-Frequency Mechanical Spectroscopy. IEEE Trans. Instrum. Meas. 2011, 11, 3608–3618. [Google Scholar] [CrossRef]
Parameter Name | Value |
---|---|
L1, L2/μH | 42 |
C1, C2/μF | 1.5 |
RL1, RL2/mΩ | 50 |
Lx/μH | 0.5 |
Battery voltage E/V | 4.2 |
Peak input voltage Udc/V | 10 |
Switching frequency fsw/kHz | 20 |
Sampling frequency fs/MHz | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Mao, J.; Wu, Q.; Deng, Y.; Wu, J.; Li, W.; He, X. Magnetic Coupling-Based Battery Impedance Measurement Method. Energies 2021, 14, 7490. https://doi.org/10.3390/en14227490
Li C, Mao J, Wu Q, Deng Y, Wu J, Li W, He X. Magnetic Coupling-Based Battery Impedance Measurement Method. Energies. 2021; 14(22):7490. https://doi.org/10.3390/en14227490
Chicago/Turabian StyleLi, Chushan, Junjie Mao, Qiang Wu, Yibo Deng, Jiande Wu, Wuhua Li, and Xiangning He. 2021. "Magnetic Coupling-Based Battery Impedance Measurement Method" Energies 14, no. 22: 7490. https://doi.org/10.3390/en14227490
APA StyleLi, C., Mao, J., Wu, Q., Deng, Y., Wu, J., Li, W., & He, X. (2021). Magnetic Coupling-Based Battery Impedance Measurement Method. Energies, 14(22), 7490. https://doi.org/10.3390/en14227490