Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels
Abstract
:1. Introduction
2. Theoretical Background
2.1. International Technical Standards for Operations in the Electricity Sector
2.2. Model and Parameters of the Electric Power System
2.3. System, Model, and Optimization Process
2.4. Clustering for Mapping Consumers by Consumption Range
3. Methodology
3.1. Adequacy of Voltage in the Distribution Power Grid
3.2. Spatialization of Information, Grouping, and Classification in the Distribution Power Grid
3.3. Loading, Data Export, and Simulation of the Distribution Power Grid
3.4. Optimization Process
3.5. Algorithms for Inserting Distributed Photovoltaic Generation in Distribution Power Grid
4. Results
4.1. Data for the Case Study
4.2. Model Validation and Simulation
4.3. Clustering for Mapping Consumers by Consumption Range
4.4. Validation of the Allocation of Distributed Generation Photovoltaic and Use of the Optimization Process
4.5. Allocation and Analysis of Distributed Generation Photovoltaic in Different Geographic Locations
4.6. Optimization Process Applied in the Allocation of DGPV in the Real Feeder
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABNT | Brazilian Association of Technical Standards |
ALGA | Augmented Lagrangian Genetic Algorithm |
ANEEL | National Electric Energy Agency |
ANSI | American National Standards Institute |
AV | Adequate Voltage |
DaB | Computational Tool Database |
DB | Database |
CU | Consumer Units |
CV | Critical Voltage |
DG | Distributed Generation |
DGPV | Distributed Generation Photovoltaic |
FSQP | Fast Sequential Quadratic Programming |
GA | Genetic Algorithm |
IEC | International Electrotechnical Commission |
IEEE | Institute of Electrical and Electronics Engineers |
ISO | International Organization for Standardization |
LV | Low Voltage Segment |
MV | Medium Voltage Segment |
OpenDSS | Open Distribution System Simulator |
PRODIST | Distribution Procedures |
PSO | Particle Swarm Optimization |
PV | Precarious Voltage |
SDB | Spatial Database |
SQP | Sequential Quadratic Programming |
UTM | Universal Transverse Mercator |
References
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Hunt, J.D.; Stilpen, D.; Freitas, M.A.V. A review of the causes, impacts and solutions for electricity supply crises in Brazil. Renew. Sustain. Energy Rev. 2018, 88, 208–222. [Google Scholar] [CrossRef]
- Latief, R.; Lefen, L. Foreign Direct Investment in the Power and Energy Sector, Energy Consumption, and Economic Growth: Empirical Evidence from Pakistan. Sustainability 2019, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- ANEEL. Procedures for the Distribution of Electric Energy in the National Electrical System (PRODIST). Module 8-Quality of Electric Energy. Review 10. 2018; (In Portuguese). Available online: www.aneel.gov.br/prodist (accessed on 27 September 2021).
- IEEE STD. ANSI/IEEE 1159: IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Std 1159-2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar] [CrossRef]
- IEEE Std 1564: IEEE Guide for Voltage Sag Indices. 2014. Available online: https://ieeexplore.ieee.org/document/6842753 (accessed on 27 September 2021).
- ISO. ISO ICS 29.240.01: Power Transmission and Distribution Networks in General; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/ics/29.240/x/ (accessed on 27 September 2021).
- CENELEC. CENELEC–EN 50160: Voltage Characteristics of Electricity Supplied by Public Electricity Networks; German Institute for Standardisation: Berlin, Germany, 2010. [Google Scholar]
- NRS. NRS 048-2-2003: Electricity Supply–Quality of Supply–Part 2: Voltage Characteristics, Compatibility Levels, Limits and Assessment Methods; Electricity Supply Industry (ESI): Pretoria, South Africa, 2003. [Google Scholar]
- Sarwar, S.; Mokhlis, H.; Othman, M.; Muhammad, M.A.; Laghari, J.A.; Mansor, N.N.; Mohamad, H.; Pourdaryaei, A. A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems. Sustainability 2020, 12, 6234. [Google Scholar] [CrossRef]
- Islam, M.Z.; Wahab, N.I.A.; Veerasamy, V.; Hizam, H.; Mailah, N.F.; Guerrero, J.M.; Mohd Nasir, M.N. A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission. Sustainability 2020, 12, 5248. [Google Scholar] [CrossRef]
- Rezaeian-Marjani, S.; Galvani, S.; Talavat, V.; Farhadi-Kangarlu, M. Optimal allocation of D-STATCOM in distribution networks including correlated renewable energy sources. Int. J. Electr. Power 2020, 122, 106178. [Google Scholar] [CrossRef]
- Kim, S.L.; Kitsos, P.; Nekovee, M.; Yu, F.R.; Zhang, Y. Guest editorial: Smart grid communications systems. IEEE Syst. J. 2014, 8, 417–421. [Google Scholar] [CrossRef]
- Amin, S.M.; Wollenberg, B.F. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag. 2005, 3, 34–41. [Google Scholar] [CrossRef]
- Albagli, A.N.; Falcao, D.M.; Rezende, J.F. Smart grid framework co-simulation using HLA architecture. Electr. Power Syst. Res. 2016, 130, 22–33. [Google Scholar] [CrossRef]
- Howell, S.; Rezgui, Y.; Hippolyte, J.; Jayan, B.; Li, H. Towards the next generation of smart grids: Semantic and holonic multiagent management of distributed energy resources. Renew. Sustain. Energy Rev. 2017, 77, 193–214. [Google Scholar] [CrossRef]
- Smith, J.W.; Dugan, R.; Sunderman, W. Distribution modeling and analysis of high penetration PV. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Acharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Electr. Power Energy Syst. 2006, 28, 669–678. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N.; Bansal, R.C. Analytical expressions for DG allocation in primary distribution networks. IEEE Trans. Energy Convers. 2010, 25, 814–820. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N. Multiple distributed generator placement in primary distribution networks for loss reduction. IEEE Trans. Ind. Electron. 2013, 60, 1700–1708. [Google Scholar] [CrossRef]
- Prakash, P.; Khatod, D.K. Optimal sizing and siting techniques for distributed generation in distribution systems: A review. Renew. Sustain. Energy Rev. 2016, 57, 111–130. [Google Scholar] [CrossRef]
- Hadjsaid, N.; Canard, J.; Dumas, F. Dispersed generation impact on distribution networks. IEEE Comput. Appl. Power 1999, 12, 22–28. [Google Scholar] [CrossRef]
- El-Khattam, W.; Salama, M. Distributed generation technologies, definitions and benefits. IEEE Comput. Appl. Power 2004, 71, 119–128. [Google Scholar] [CrossRef]
- Gözel, T.; Hocaoglu, M. Ananalytical method for the sizing and siting of distributed generators in radial systems. Electr. Power Syst. Res. 2009, 79, 912–918. [Google Scholar] [CrossRef]
- Kotamarty, S.; Khushalani, S.; Schulz, N. Impact of distributed generation on distribution contingency analysis. Electr. Power Syst. Res. 2008, 78, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Mukherjee, V.; Tiwari, P. A surveyon impact assessment of DG and FACTS controllers in power systems. Renew. Sustain. Energy Rev. 2015, 42, 846–882. [Google Scholar] [CrossRef]
- Viral, R.; Khatod, D. Optimal planning of distributed generation systems in distribution system: A review. Renew. Sustain. Energy Rev. 2012, 16, 146–165. [Google Scholar] [CrossRef]
- Sultana, U.; Khairuddin, A.B.; Aman, M.; Mokhtar, A.; Zareen, N. A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew. Sustain. Energy Rev. 2016, 63, 363–378. [Google Scholar] [CrossRef]
- Alonso, M.; Amaris, H. Voltage stability in distribution networks with DG. In Proceedings of the IEEE Bucharest Power Tech Conference, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [Google Scholar]
- Hung, D.; Mithulananthan, N. Loss reduction and loadability enhancement with DG: A dual–index analytical approach. Appl. Energy 2014, 115, 233–241. [Google Scholar] [CrossRef]
- Varesi, K. Optimal allocation of DG units for power loss reduction and voltage profile improvement of distribution networks using PSO algorithm. World Acad. Sci. Eng. Technol. 2011, 60, 1938–1942. [Google Scholar]
- Ayodele, T.; Ogunjuyigbe, A.; Akinola, O. Optimal location, sizing, and appropriate technology selection of distributed generators for minimizing power loss using genetic algorithm. J. Renew. Energy 2015, 2015, 832917. [Google Scholar] [CrossRef] [Green Version]
- Juanuwattanakul, P.; Masoum, M. Increasing distributed generation penetration in multiphase distribution networks considering grid losses, maximum loading factor and bus voltage limits. IET Gener. Transm. Distrib. 2012, 6, 1262–1271. [Google Scholar] [CrossRef] [Green Version]
- Harrison, G.; Piccolo, A.; Siano, P.; Wallace, A. Distributed generation capacity evaluation using combined genetic algorithm and OPF. Int. J. Emerg. Electr. Power Syst. 2007, 8, 1–13. [Google Scholar] [CrossRef]
- World Bank. World Bank Development Indicator 2015; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Hemdan, N.G.A.; Michael, K. Efficient integration of distributed generation for meeting the increased load demand. Electr. Power Energy Syst. 2011, 33, 1572–1583. [Google Scholar] [CrossRef]
- Chiradeja, P.; Ramakumar, R. An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Convers. 2004, 19, 764–773. [Google Scholar] [CrossRef]
- Bayod-Rújula, A.A. Future development of the electricity systems with distributed generation. Energy 2009, 34, 377–383. [Google Scholar] [CrossRef]
- Zangiabadi, M.; Feuillet, R.; Lesani, H.; Hadj-Said, N.; Kvaloy, J.T. Assessing the performance and benefits of customer distributed generation developers under uncertainties. Energy 2011, 36, 1703–1712. [Google Scholar] [CrossRef]
- Soroudi, A.; Ehsan, M. A distribution network expansion planning model considering distributed generation options and techo-economical issues. Energy 2010, 35, 3364–3374. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.A.; Fahmy, F.H.; Nafeh, A.E.S.A.; Abu-elmagd, M.A. Genetic single objective optimisation for sizing and allocation of renewable DG systems. Int. J. Sustain. Energy 2017, 36, 545–562. [Google Scholar] [CrossRef]
- Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
- Ganguly, S.; Samajpati, D. Distributed Generation Allocation on Radial Distribution Networks Under Uncertainties of Load and Generation Using Genetic Algorithm. IEEE Trans. Sustain. Energy 2015, 6, 688–697. [Google Scholar] [CrossRef]
- AlHajri, M.F.; AlRashidi, M.R.; El-Hawary, M.E. Improved Sequential Quadratic Programming Approach for Optimal Distribution Generation Deployments via Stability and Sensitivity Analyses. Electr. Power Components Syst. 2010, 38, 1595–1614. [Google Scholar] [CrossRef]
- Angelos, E.W.S.; Saavedra, O.R.; Cortés, O.A.C.; de Souza, A.N. Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems. IEEE Trans. Power Deliv. 2011, 26, 2436–2442. [Google Scholar] [CrossRef]
- Tahan, C.M.V.; Zamora, F.P. Distribution System Mapping for the Spatial Load Forecasting Automation. In VIII Symposium of Specialists in Electric Operational and Expansion Planning; CIGRE-Brasil: Rio de Janeiro, Brazil, 2002. [Google Scholar]
- Yang, B.; Yu, L.; Chen, Y.; Ye, H.; Shao, R.; Shu, H.; Yu, T.; Zhang, X.; Sun, L. Modelling, applications, and evaluations of optimal sizing and placement of distributed generations: A critical state-of-the-art survey. Int. J. Energy Res. 2021, 45, 3615–3642. [Google Scholar] [CrossRef]
- Bawazir, R.O.; Cetin, N.S. Comprehensive overview of optimizing PV-DG allocation in power system and solar energy resource potential assessments. Energy Rep. 2020, 6, 173–208. [Google Scholar] [CrossRef]
- IEC. Welcome to the IEC-International Electrotechnical Commission. 2010. Available online: https://www.iec.ch (accessed on 21 September 2021).
- IEC. IEC 61000-3-3: Electromagnetic Compatibility (EMC)–Part 3-3: Limits–Limitation of Voltage Changes, Voltage Fluctuations and Flicker in Public Low-Voltage Supply Systems, for Equipment with Rated Current ≤ 16 A Per Phase and Not Subject to Conditional Connection; International Electrotechnical Commission: Geneva, Switzerland, 2013. [Google Scholar]
- IEC. IEC TR 61000-3-13: Electromagnetic Compatibility (EMC)-Part 3-13: Limits—Assessment of Emission Limits for the Connection of Unbalanced Installations to MV, HV and EHV Power Systems; International Electrotechnical Commission: Geneva, Switzerland, 2008. [Google Scholar]
- IEC. IEC 61000-4-30: Electromagnetic Compatibility (EMC)–Part 4-30: Testing and Measurement Techniques–Power Quality Measurement Methods; International Electrotechnical Commission: Geneva, Switzerland, 2015. [Google Scholar]
- IEC. IEC 60364-7-712: Low Voltage Electrical Installations–Part 7-712: Requirements for Special Installations or Locations–Solar Photovoltaic (PV) Power Supply Systems; International Electrotechnical Commission: Geneva, Switzerland, 2017. [Google Scholar]
- IEC. IEC 62446: Grid Connected Photovoltaic Systems–Minimum Requirements for System Documentation, Commissioning Tests and Inspection; International Electrotechnical Commission: Geneva, Switzerland, 2009. [Google Scholar]
- IEC. IEC 61724: Photovoltaic System Performance Monitoring–Guidelines for Measurement, Data Exchange and Analysis; International Electrotechnical Commission: Geneva, Switzerland, 1998. [Google Scholar]
- IEC. Photovoltaic (PV) Systems–Characteristics of the Utility Interface; International Electrotechnical Commission: Geneva, Switzerland, 2004. [Google Scholar]
- IEC. IEC 62446-1: Photovoltaic (PV) Systems – Requirements for Testing, Documentation and Maintenance–Part 1: Grid Connected Systems–Documentation, Commissioning Tests and Inspection; International Electrotechnical Commission: Geneva, Switzerland, 2016. [Google Scholar]
- IEEE. IEEE Std 519: IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; Revision of IEEE Std 519-1992; IEEE: Piscataway, NJ, USA, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- IEEE. Recommended Practice for Electric Power Distribution for Industrial Plants; IEEE Std 141-1993; IEEE: Piscataway, NJ, USA, 1994; pp. 1–768. [Google Scholar] [CrossRef]
- IEEE. IEEE Std 1547: IEEE Standard for Interconnecting Distributed Resources with Electric Power System. 2003. Available online: https://ieeexplore.ieee.org/document/1225051 (accessed on 21 September 2021).
- IEEE. IEEE Std. 929: IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems. 2000. Available online: https://ieeexplore.ieee.org/document/836389 (accessed on 21 September 2021).
- IEEE. IEEE Std 2030: IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. 2011. Available online: https://ieeexplore.ieee.org/document/6018239 (accessed on 21 September 2021).
- ANSI. Annual Report: 2016-2017. 2017. Available online: https://www.ansi.org/news/standards-news/all-news/2017/10/20162017-annual-report-now-available-19 (accessed on 21 September 2021).
- ANSI. C84.1-2016: American National Standard–For Electric Power Systems and Equipment–Voltage Ratings (60 Hertz); ANSI: New York, NY, USA, 2016. [Google Scholar]
- ISO. Economic Benefits of Standards–International Case Studies–Volume 2. 2012. Available online: https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100311.pdf (accessed on 21 September 2021).
- ISO. International Classification for Standards, 7th ed.; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/publication/PUB100033.html (accessed on 21 September 2021).
- ISO. ISO ICS 29.020: Electrical Engineering in General; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/ics/29.020/x/ (accessed on 21 September 2021).
- ISO. ISO ICS 29.240.20: Power Transmission and Distribution Lines; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/ics/29.240.20/x/ (accessed on 21 September 2021).
- ISO. ISO ICS 29.240.99 Other Equipment Related to Power Transmission and Distribution Networks; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/ics/29.240.99/x/ (accessed on 21 September 2021).
- ANEEL. Normative Resolution No. 482 of April 17, 2012; ANEEL: Brasilia, Brazil, 2012. (In Portuguese) [Google Scholar]
- ANEEL. Normative Resolution No. 687 of November 24, 2015; ANEEL: Brasilia, Brazil, 2015. (In Portuguese) [Google Scholar]
- ANEEL. Procedures for the Distribution of Electric Energy in the National Electrical System (PRODIST). Module 1-Introduction. Review 10; ANEEL: Brasilia, Brazil, 2016. (In Portuguese) [Google Scholar]
- ANEEL. Procedures for the Distribution of Electric Energy in the National Electrical System (PRODIST). Module 3-Access to the Distribution System. Review 7; ANEEL: Brasilia, Brazil, 2017. (In Portuguese) [Google Scholar]
- ABNT. Statute-Brazilian Association of Technical Standards-Standardization National Forum; ABNT: Rio de Janeiro, Brazil, 2015. (In Portuguese) [Google Scholar]
- IEEE STD. IEEE Std 1453: IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems; IEEE Std 1453-2015 (Revision of IEEE Std 1453-2011); IEEE: Piscataway, NJ, USA, 2015; pp. 1–74. [Google Scholar]
- Stevenson, W.D. Elements of Power Systems Analysis, 4th ed.; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Arritt, R.F.; Dugan, R.C. The IEEE 8500-node test feeder. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Saadat, H. Power System Analysis; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Glover, J.D.; Sarma, M.S.; Overbye, T.J. Power System Analysis & Design, 5th ed.; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Carson, J.R. Wave propagation in overhead wires with ground return. Bell Syst. Tech. J. 1926, 5, 539–554. [Google Scholar] [CrossRef]
- Dugan, R.C. Tech Note: Modeling Multi–Winding Transformers; Electric Power Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Sharma, D.K.; Shakya, S.R. Training Manual for Engineers on Solar PV System; (Technical Report); Alternative Energy Promotion Center (AEPC): Kathmandu, Nepal, 2011. [Google Scholar]
- Maier, M.W.; Rechtin, E. The Art of Systems Architecting; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Mobus, G.E.; Kalton, M.C. Principles of Systems Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Eykhoff, P. System Identification: Parameter and State Estimation; Wiley–Interscience London: London, UK, 1974. [Google Scholar]
- Sarker, R.A.; Newton, C.S. Optimization Modelling: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Grotschel, M.; Krumke, S.O.; Rambau, J. Online Optimization of Large Scale Systems; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- UnnisaBegum, A.; Hussain, M.A.; Shaik, M. Data Mining Techniques For Big Data. Int. J. Adv. Res. Sci. Eng. Technol. 2019, 6, 4–8. [Google Scholar] [CrossRef]
- Garima; Gulati, H.; Singh, P.K. Clustering Techniques in Data Mining: A Comparison. In Proceedings of the 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Ghosh, S.; Dubey, S.K. Comparative Analysis of K-Means and Fuzzy CMeans Algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 35–142. [Google Scholar] [CrossRef] [Green Version]
- Engels, R.; Theusinger, C. Using a Data Metric for Preprocessing Advice for Data Mining Applications. In Proceedings of the 13th European Conference on Articial Intelligence, Brighton, UK, 23–28 August 1998; John Wiley & Sons Ltd.: Brighton, UK, 1998. [Google Scholar]
- Dugan, R.C. Reference Guide—The Open Distribution System Simulator (OpenDSS); Electric Power Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Cararo, J.A.G.; Silva, A.H.F.; Aniceto, B.C.; Reis, M.R.C.; Rodrigues, B.U.; Galvao, N.K.M.; Vilela, W.A.; Neto, J.C.; Calixto, W.P. Optimizing of the insertion of distributed generation into a power distribution network. In Proceedings of the 2017 Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile, 18–20 October 2017. [Google Scholar]
- Vilela Junior, W.A.; Coimbra, A.P.; Wainer, G.A.; Caetano Neto, J.; Cararo, J.A.G.; Reis, M.R.C.; Santos, P.V.; Calixto, W.P. Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid. Energies 2021, 14, 4373. [Google Scholar] [CrossRef]
- Aniceto, B.C.; Vilela Júnior, W.A.; Caetano Neto, J.; Rodrigues, B.U.; Cararo, J.A.G.; Gomes, V.M.; Silva, A.H.F.; Freitas Júnior, J.L.; Silva, D.C.; Gomes, F.A.; et al. Calculation and Analysis of Problem in Voltage Transgressions on Electricity Distribution Networks. In Proceedings of the 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 17–19 May 2017. [Google Scholar]
- Oliveira, C.; Neto, A.B.; Minussi, C.; Alves, D.; Castro, C. New representation of PV buses in the current injection Newton power flow. Electr. Energy Syst. 2017, 90, 237–244. [Google Scholar] [CrossRef] [Green Version]
Indicators | Brazil | USA | Canada | Europe | South Africa | Japan |
---|---|---|---|---|---|---|
Steady-state voltage | X | X | X | X | ||
Frequency variations | X | X | X | |||
Individual harmonic voltage distortion | X | X | X | X | X | X |
Total harmonic voltage distortion | X | X | X | X | X | X |
Current individual harmonic distortion | X | X | ||||
Current total harmonic distortion | X | |||||
Voltage imbalances | X | X | X | X | X | |
Voltage fluctuation | X | X | X | X | X | |
Short term voltage variations | X | X | X | X | ||
Penalties under violation | X | X |
Adequate | 0.93 1.05 |
Precarious | 0.90 0.93 |
Critical | or |
Adequate | |
Precarious | or |
Critical | or |
Feeder | MV Lines | LV Lines | Branches | Transformers | MV CU | LV CU |
---|---|---|---|---|---|---|
01 | 893 | 2980 | 10,181 | 140 | 17 | 12,305 |
02 | 893 | 1051 | 5257 | 154 | 36 | 11,338 |
03 | 408 | 652 | 2285 | 108 | 25 | 3596 |
04 | 726 | 1136 | 3485 | 155 | 35 | 5184 |
05 | 432 | 704 | 2113 | 107 | 35 | 2662 |
06 | 1245 | 3651 | 8874 | 178 | 11 | 11,338 |
07 | 351 | 411 | 2119 | 96 | 35 | 3068 |
08 | 542 | 830 | 2621 | 79 | 14 | 3617 |
09 | 578 | 733 | 3621 | 165 | 39 | 5899 |
10 | 873 | 1937 | 9804 | 183 | 22 | 12,165 |
13 | 1893 | 2541 | 4469 | 269 | 32 | 5306 |
14 | 188 | 205 | 962 | 33 | 12 | 1359 |
15 | 388 | 512 | 1570 | 98 | 31 | 2201 |
16 | 493 | 530 | 1761 | 119 | 44 | 2233 |
17 | 524 | 413 | 5339 | 144 | 42 | 6540 |
19 | 1141 | 2819 | 4074 | 153 | 12 | 4533 |
20 | 1233 | 3986 | 13,253 | 175 | 18 | 15,590 |
# | Measure Current [A] | Simulated Current [A] | Deviation [%] |
---|---|---|---|
Maximum | 44 | 35 | 20.45 |
Minimum | 27 | 17 | 37.03 |
# | Measure Voltage [kV] | Simulated Voltage [kV] | Deviation [%] |
---|---|---|---|
Maximum | 14.4 | 14.38 | 0.14 |
Minimum | 14 | 14.07 | −0.50 |
Phase | Nodes | Nodes [%] | CV | CV [%] | PV | PV [%] | AV | AV [%] |
---|---|---|---|---|---|---|---|---|
Phase A | 1386 | 46.94 | 445 | 32.11 | 144 | 10.39 | 797 | 57.50 |
Phase B | 840 | 28.44 | 235 | 27.98 | 115 | 13.69 | 490 | 58.33 |
Phase C | 727 | 24.62 | 240 | 33.01 | 97 | 13.34 | 390 | 53.64 |
Total | 2953 | 100.00 | 920 | 31.15 | 356 | 12.05 | 1677 | 56.79 |
# | Optimization: pos and pot | Optimization: qtd, pos, pot | |||||
---|---|---|---|---|---|---|---|
Item | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | |
(1) | 1 | 2 | 3 | 3 | 1 | 3 | |
(2) | 1 | 2 | 3 | 1 | 1 | 1 | |
(3) | 5.57 | 6.49 | 6.59 | 6.59 | 5.57 | 6.59 | |
(4) | 4.70 | 7.20 | 4.18 | 6.82 | 4.82 | 5.06 | |
(5) | −0.87 | +0.71 | −2.41 | +0.23 | −0.75 | −1.53 | |
(6) | 10.95 | 42.77 | 50.93 | 50.93 | 10.95 | 50.93 | |
(7) | 0 | 0 | 0 | 0 | 0 | 0 | |
(8) | 3 | 6 | 7 | 5 | 3 | 27 | |
(9) | 35 | 163 | 119 | 183 | 26 | 159 | |
- | 366 | 114 | - | - | - | ||
- | - | 174 | - | - | - | ||
(10) | 254.42 | 423.84 | 221.2 | 821.60 | 245.93 | 675.84 | |
- | 302.77 | 221.5 | - | - | - | ||
- | - | 100.7 | - | - | - | ||
254.42 | 726.61 | 543.4 | 821.60 | 245.93 | 675.84 | ||
(11) | yes | yes | yes | yes | yes | yes |
Analysis | Phase | Nodes | Nodes [%] | CV | CV [%] | PV | PV [%] | AV | AV [%] |
---|---|---|---|---|---|---|---|---|---|
Analysis 1 | Phase A | 1387 | 46.92 | 446 | 32.15 | 138 | 9.95 | 803 | 57.90 |
Phase B | 841 | 28.45 | 234 | 27.83 | 115 | 13.67 | 492 | 58.50 | |
Phase C | 728 | 24.63 | 241 | 33.10 | 95 | 13.05 | 392 | 53.85 | |
Total | 2956 | 100.00 | 921 | 31.15 | 348 | 11.77 | 1687 | 57.07 | |
Analysis 2 | Phase A | 1387 | 46.92 | 367 | 26.46 | 93 | 6.71 | 927 | 66.83 |
Phase B | 841 | 28.45 | 181 | 21.52 | 75 | 8.92 | 585 | 69.56 | |
Phase C | 728 | 24.63 | 181 | 24.86 | 78 | 10.72 | 469 | 64.42 | |
Total | 2956 | 100.00 | 729 | 24.66 | 246 | 8.32 | 1981 | 67.01 | |
Analysis 3 | Phase A | 1396 | 46.80 | 430 | 30.81 | 108 | 7.73 | 858 | 61.46 |
Phase B | 850 | 28.50 | 230 | 27.05 | 87 | 10.24 | 533 | 62.71 | |
Phase C | 737 | 24.70 | 236 | 32.02 | 74 | 10.04 | 427 | 57.94 | |
Total | 2983 | 100.00 | 896 | 30.04 | 269 | 9.02 | 1818 | 60.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cararo, J.A.G.; Caetano Neto, J.; Vilela Júnior, W.A.; Reis, M.R.C.; Wainer, G.A.; dos Santos, P.V.; Calixto, W.P. Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels. Energies 2021, 14, 7506. https://doi.org/10.3390/en14227506
Cararo JAG, Caetano Neto J, Vilela Júnior WA, Reis MRC, Wainer GA, dos Santos PV, Calixto WP. Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels. Energies. 2021; 14(22):7506. https://doi.org/10.3390/en14227506
Chicago/Turabian StyleCararo, José A. G., João Caetano Neto, Wagner A. Vilela Júnior, Márcio R. C. Reis, Gabriel A. Wainer, Paulo V. dos Santos, and Wesley P. Calixto. 2021. "Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels" Energies 14, no. 22: 7506. https://doi.org/10.3390/en14227506
APA StyleCararo, J. A. G., Caetano Neto, J., Vilela Júnior, W. A., Reis, M. R. C., Wainer, G. A., dos Santos, P. V., & Calixto, W. P. (2021). Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels. Energies, 14(22), 7506. https://doi.org/10.3390/en14227506