Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness
Abstract
:1. Introduction
2. Mathematical Model of the Rail Vehicle–Track System
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalker, J.J.; Chudzikiewicz, A. Calculation of the evolution of the form of a railway wheel profile through wear. In International Series of Numerical Mathematics; Birkhauser Verlag: Basel, Switzerland, 1991; Volume 101, Available online: https://link.springer.com/chapter/10.1007/978-3-0348-7303-1_7 (accessed on 9 October 2021).
- Hiensch, E.J.M.; Burgelman, N. Switch Panel wear loading—A parametric study regarding governing train operational factors. Veh. Syst. Dyn. 2017, 55, 1384–1404. [Google Scholar] [CrossRef] [Green Version]
- Megheo, A.; Loendersloot, R.; Bosmn, R.; Tinga, T. Rail Wear Estimation for PREDICTIVE Maintenance: A strategic approach. In Proceedings of the European Conference of the Prognostics and Health Management Society, Philadelphia, PA, USA, 24–27 September 2018. [Google Scholar]
- Li, Z. Wheel-Rail Rolling Contact and Its Application to Wear Simulation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2002. [Google Scholar]
- Palsson, B.A. Optimisation of Railway Switches and Crossings. Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden, 2014. [Google Scholar]
- Xu, J.-M.; Wang, P.; Ma, X.-C.; Qian, Y.; Chen, R. Parameters studies for rail wear in high-speed railway turnouts by unreplicated saturated factorial design. J. Cent. South Univ. 2017, 24, 988–1001. [Google Scholar] [CrossRef]
- Xu, J.; Wang, P.; Wang, L.; Chen, R. Effects of profile wear on wheel–rail contact conditions and dynamic interaction of vehicle and turnout. Adv. Mech. Eng. 2016, 8, 1687814015623696. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, W.; Guo, J.; Liu, Q. Study on Wear and Fatigue Performance of Two Types of High-Speed Railway Wheel Materials at Different Ambient Temperatures. Materials 2020, 13, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telliskivi, T.; Olofsson, U. Wheel-rail wear simulation. In Proceedings of the 6th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2003), Gothenburg, Sweden, 10–13 June 2003. [Google Scholar]
- Chang, S.; Pyun, Y.-S.; Amanov, A. Wear Enhancement of Wheel-Rail Interaction by Ultrasonic Nanocrystalline Surface Modification Technique. Materials 2017, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Zobory, I.Z.P.I. Prediction of Wheel/Rail Profile Wear. Veh. Syst. Dyn. 1997, 28, 221–259. [Google Scholar] [CrossRef]
- Kisilowski, J.; Kowalik, R. Numerical Testing of Switch Point Dynamics—A Curved Beam with a Variable Cross-Section. Materials 2020, 13, 701. [Google Scholar] [CrossRef] [Green Version]
- Chudzikiewicz, A.; Korzeb, J. Simulation study of wheels wear in low-floor tram with independently rotating wheels. Arch. Appl. Mech. 2018, 88, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Kisilowski, J. Dynamika układu tor-pojazd, Prace Naukowe IT, WPN, Warsaw, Poland 1978, z.15. Available online: https://repo.pw.edu.pl/info/book/WUT386800/#.YYq0l7rdguU (accessed on 9 October 2021). (In Polish).
- Kisilowski, J.; Zboiński, K. Determination of Generalized Inertial Forces in Relative Motion of Mechanical Systems of a Rail-Way-Vehicle Type, Rozprawy Inżynierskie; Polska Akademia Nauk: Warsaw, Poland, 1989; Volume 37, pp. 579–590. [Google Scholar]
- Kisilowski, J. Dynamika Układu Mechanicznego Pojazd Szynowy-Tor; PWN: Warszawa, Poland, 1991; Available online: https://repo.pw.edu.pl/info/book/WUT386800/#.YYq1zbrdguV (accessed on 9 October 2021). (In Polish)
- Kowalik, R. Wybrane problemy mechaniki rozjazdu kolejowego dla dużych prędkości; Spatium: Radom, Poland, 2020; Available online: http://inw-spatium.pl/2020/08/15/wybrane-problemy-dynamiki-rozjazdu-kolejowego-przy-duzych-predkosciach-wspolczesnych-pociagow/ (accessed on 9 October 2021). (In Polish)
- Kisilowski, J.; Skopińska, H. Dynamika krzyżownicy rozjazdu zwyczajnego. In Archiwum Inżynierii Lądowej–Tom XXIX 4/83; PWN: Warszawa, Poland, 1983. (In Polish) [Google Scholar]
- Lei, X. High Speed Railway Track Dynamics Models, Algorithms and Applications; Springer: Berlin, Germany, 2017. [Google Scholar]
- Xu, J.; Wang, P.; Wang, J.; An, B.; Chen, R. Numerical analysis of the effect of track parameters on the wear of turnout rails in high-speed railways. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 232, 709–721. [Google Scholar] [CrossRef]
- Liu, C.-P.; Zhao, X.-J.; Liu, P.-T.; Pan, J.-Z.; Ren, R.-M. Influence of Contact Stress on Surface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Material. Materials 2019, 12, 3268. [Google Scholar] [CrossRef] [Green Version]
- Pillai, N.; Shih, J.-Y.; Roberts, C. Evaluation of Numerical Simulation Approaches for Simulating Train–Track Interactions and Predicting Rail Damage in Railway Switches and Crossings (S&Cs). Infrastructures 2021, 6, 63. [Google Scholar] [CrossRef]
- Usamah, R.; Kang, D.; Ha, Y.D.; Koo, B. Structural Evaluation of Variable Gauge Railway. Infrastructures 2020, 5, 80. [Google Scholar] [CrossRef]
- Jin, X. Characteristics, Mechanisms, Influences and Counter Measures of High Speed Wheel/Rail Wear: Transverse Wear of Wheel Tread. J. Mech. Eng. 2018, 54, 3–13. [Google Scholar] [CrossRef]
- Pletz, M.; Daves, W.; Ossberger, H. A wheel passing a crossing nose: Dynamic analysis under high axle loads using finite element modelling. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2012, 226, 603–611. [Google Scholar] [CrossRef]
- Wei, Z.; Shen, C.; Li, Z.; Dollevoet, R. Wheel–Rail Impact at Crossings: Relating Dynamic Frictional Contact to Degradation. J. Comput. Nonlinear Dyn. 2017, 12, 041016. [Google Scholar] [CrossRef]
- Bruni, S.; Anastasopoulos, I.; Alfi, S.; Van Leuven, A.; Gazetas, G. Effects of train impacts on urban turnouts: Modelling and validation through measurements. J. Sound Vib. 2009, 324, 666–689. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, X.; Cai, W.; Han, J.; Xiao, X. Key Factors of the Initiation and Development of Polygonal Wear in the Wheels of a High-Speed Train. Appl. Sci. 2020, 10, 5880. [Google Scholar] [CrossRef]
- Turabimana, P.; Nkundineza, C. Development of an On-Board Measurement System for Railway Vehicle Wheel Flange Wear. Sensors 2020, 20, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enblom, R.; Berg, M. Simulation of railway wheel profile development due to wear—Influence of disc braking and contact environment. Wear 2005, 258, 1055–1063. [Google Scholar] [CrossRef]
- Apezetxea, I.S.; Perez, X.; Casanueva, C.; Alonso, A. New methodology for fast prediction of wheel wear evolution. Veh. Syst. Dyn. 2017, 55, 1071–1097. [Google Scholar] [CrossRef]
- Chudzikiewicz, A.; Droździel, J.; Sowiński, B. Mathematical Model of Track Settlement Caused by Dry Friction. Arch. Transp. 2009, 21, 25–38. [Google Scholar]
- Arizon, J.D.; Verlinden, O.; Dehombreux, P. Prediction of wheel wear in urban railway transport: Comparison of existing models. Veh. Syst. Dyn. 2007, 45, 849–866. [Google Scholar] [CrossRef]
- Ding, J.; Li, F.; Huang, Y.; Sun, S.; Zhang, L. Application of the semi-Hertzian method to the prediction of wheel wear in heavy haul freight car. Wear 2014, 314, 104–110. [Google Scholar] [CrossRef]
- Duda, S. Modelowanie i symulacja oddziaływań dynamicznych koło—Szyna w ruchu pojazdu w rozje´zdzie kolejowym. Modelowanie Inżynierskie 2012, 14, 32–38. [Google Scholar]
- Kisilowski, J.; Kowalik, R. Displacements of the Levitation Systems in the Vehicle Hyperloop. Energies 2020, 13, 6595. [Google Scholar] [CrossRef]
- Enblom, R. Simulation of Wheel and Rail Profile Evolution: Wear Modeling and Validation. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2004. [Google Scholar]
- Gan, F.; Dai, H.; Gao, H.; Chi, M. Wheel-rail wear progression of high speed train with type S1002CN wheel treads. Wear 2015, 328, 569–581. [Google Scholar] [CrossRef]
- Han, P.; Zhang, W.H. A new binary wheel wear pre-diction model based on statistical method and the demonstration. Wear 2015, 324, 90–99. [Google Scholar] [CrossRef]
- Ignesti, M.; Innocenti, A.; Marini, L.; Meli, E.; Rindi, A. Development of a model for the simultaneous analysis of wheel and rail wear in railway systems. Multibody Syst. Dyn. 2014, 31, 191–240. [Google Scholar] [CrossRef] [Green Version]
- Ignesti, M.; Malvezzi, M.; Marini, L.; Rindi, A. Development of a wear model for the prediction of wheel and rail profile evolution in railway systems. Wear 2012, 284, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jendel, T. Prediction of wheel profile wear—Comparisons with field measurements. Wear 2002, 253, 89–99. [Google Scholar] [CrossRef]
- Trummer, G.; Lee, Z.S.; Lewis, R.; Six, K. Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products. Lubricants 2021, 9, 100. [Google Scholar] [CrossRef]
- Lin, F.; Dong, X.; Wang, Y.; Ni, C. Multiobjective Optimization of CRH3 EMU Wheel Profile. Adv. Mech. Eng. 2014, 7, 284043. [Google Scholar] [CrossRef]
- Luo, R.; Shi, H.; Teng, W.; Song, C. Prediction of wheel profile wear and vehicle dynamics evolution considering stochastic parameters for high-speed train. Wear 2017, 392, 126–138. [Google Scholar] [CrossRef]
- Magel, E.E. Rolling Contact Fatigue: A Comprehensive Review; U.S. Department of Transportation: Washington, DC, USA, 2011. Available online: https://railroads.dot.gov/elibrary/rolling-contact-fatigue-comprehensive-review (accessed on 9 October 2021).
- Olofsson, U.; Zhu, Y.; Abbasi, S.; Lewis, R.; Lewis, S. Tribology of the wheel–rail contact—Aspects of wear, particle emission and adhesion. Veh. Syst. Dyn. 2013, 51, 1091–1120. [Google Scholar] [CrossRef]
- Kisilowski, J.; Kowalik, R. Railroad Turnout Wear Diagnostics. Sensors 2021, 21, 6697. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisilowski, J.; Kowalik, R. Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness. Energies 2021, 14, 7520. https://doi.org/10.3390/en14227520
Kisilowski J, Kowalik R. Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness. Energies. 2021; 14(22):7520. https://doi.org/10.3390/en14227520
Chicago/Turabian StyleKisilowski, Jerzy, and Rafał Kowalik. 2021. "Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness" Energies 14, no. 22: 7520. https://doi.org/10.3390/en14227520
APA StyleKisilowski, J., & Kowalik, R. (2021). Mechanical Wear Contact between the Wheel and Rail on a Turnout with Variable Stiffness. Energies, 14(22), 7520. https://doi.org/10.3390/en14227520