Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis
Abstract
:1. Introduction
2. Literature Review
3. Experimental Methods
3.1. Experimental Setup and Procedure
3.2. Data Processing
3.3. Experimental Repeatability
4. Results and Discussions
4.1. Start-Up Process
4.2. Working Process
4.3. Heat Transfer Performance
5. Conclusions
- (1)
- Geyser boiling can reduce the minimum operating temperature of Na-K alloy heat pipe, and can have higher heat transfer capacity than natural convection cooling at lower temperature.
- (2)
- In the geyser boiling process, the increase in the average temperature of the condensing section is caused by the increase in the mass flow of the Na-K alloy working fluid. And the small change in the average temperature of the evaporation section is caused by the small change in the boiling temperature.
- (3)
- The increase of heating power leads to the increase of Na-K alloy working fluid mass flow during single boiling, which further leads to a linear increase of heat transfer capacity. But because of the cooling capacity, the boiling frequency does not increase linearly.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Surface area, m2 |
Ahp | Heat pipe axial section area, m2 |
cp | Specific heat of cooling water, J/(kg·K) |
D | Height of vapor space, m |
G | Mass flow of cooling water, kg/s |
h | Heat transfer coefficient, W/(m2·K) |
hja | Convective heat transfer coefficient between outer wall of cooling water jacket and air, W/(m2·K) |
K | Equivalent heat transfer coefficient of the heat pipe, W/(m2·K) |
M | Molar mass, g/mol; |
P | Measuring point |
Q | Heat transfer quantity of heat pipe, W |
R | Thermal resistance, °C/W |
Rg | Universal gas constant, J/(K·mol) |
T | Time-averaged temperature, °C |
Ttr | Vapor transition temperature, K |
Greek symbols | |
ρ | Density, kg/m3 |
μ | Viscosity, Pa·s |
λ | Length of mean free path of vapor, m |
Subscripts | |
1–15 | Measuring point 1 to 15 |
a | Adiabatic section |
c | Condenser section |
e | Evaporation section |
j | Water jacket |
v | Vapor |
References
- Panda, K.K.; Dulera, I.V.; Basak, A. Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors. Nucl. Eng. Des. 2017, 323, 376–385. [Google Scholar] [CrossRef]
- Kusuma, M.H.; Putra, N.; Antariksawan, A.R.; Koestoer, R.A.; Widodo, S.; Ismarwanti, S.; Verlambang, B.T. Passive cooling system in a nuclear spent fuel pool using a vertical straight wickless-heat pipe. Int. J. Therm. Sci. 2018, 126, 162–171. [Google Scholar] [CrossRef]
- Yan, X.K.; Duan, Y.N.; Ma, C.F.; Lv, Z.F. Construction of sodium heat-pipe furnaces and the isothermal characteristics of the furnaces. Int. J. Thermophys. 2011, 32, 494–504. [Google Scholar] [CrossRef]
- Astrua, A.M.; Iacomini, L.; Battuello, M. The combined use of a gas-controlled heat pipe and a copper point to improve the calibration of thermocouples up to 1100 °C. Int. J. Thermophys. 2008, 32, 1838–1847. [Google Scholar] [CrossRef]
- Bertiglia, F.; Iacomini, L.; Moro, F.; Merlone, A. Comparison of two potassium-filled gas-controlled heat pipes. Int. J. Thermophys. 2015, 32, 3393–3403. [Google Scholar] [CrossRef]
- Mahboobe, M.; Qiu, S.G.; Saeed, T. Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems. Appl. Therm. Eng. 2015, 81, 325–337. [Google Scholar]
- Liao, Z.; Faghri, A. Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl. Therm. Eng. 2016, 102, 952–960. [Google Scholar] [CrossRef]
- Yuan, Y.; Shan, J.Q.; Zhang, B.; Gou, J.L.; Zhang, B.; Lu, T.Y.; Ge, L.; Yang, Z.J. Study on startup characteristics of heat pipe cooled and AMTEC conversion space reactor system. Prog. Nucl. Energy 2016, 86, 18–30. [Google Scholar] [CrossRef]
- Wang, C.L.; Liu, L.; Liu, M.H.; Zhang, D.L.; Tian, W.X.; Qiu, S.Z.; Su, G.H. Conceptual design and analysis of heat pipe cooled silo cooling system for the transportable fluoride-salt-cooled high-temperature reactor. Ann. Nucl. Energy 2017, 109, 458–468. [Google Scholar] [CrossRef]
- Liu, M.H.; Zhang, D.L.; Wang, C.L.; Qiu, S.Z.; Su, G.H.; Tian, W.X. Experimental study on heat transfer performance between fluoride salt and heat pipes in the new conceptual passive residual heat removal system of molten salt reactor. Nucl. Eng. Des. 2018, 339, 215–224. [Google Scholar] [CrossRef]
- Behi, H.; Kalogiannis, T.; Patil, M.S.; Mierlo, J.V.; Berecibar, M. A new concept of air cooling and heat pipe for electric vehicles in fast discharging. Energies 2021, 14, 6477. [Google Scholar] [CrossRef]
- Xiao, H.; George, F. Design and fabrication of hybrid bi-modal wick structure for heat pipe application. J. Porous Mat. 2008, 15, 635–642. [Google Scholar]
- Behi, H.; Behi, M.; Ghanbarpour, A.; Karimi, D.; Azad, A.; Ghanbarpour, M.; Behnia, M. Enhancement of the thermal energy storage using heat-pipe-assisted phase change material. Energies 2021, 14, 6176. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.B.; Yao, Y. Experimental study on the starting-up and heat transfer characteristics of a pulsating heat pipe under local low-frequency vibrations. Energies 2021, 14, 6310. [Google Scholar] [CrossRef]
- Anderson, W.G. Sodium-Potassium (NaK) Heat Pipe. In Proceedings of the 29th National Heat Transfer Conference, Atlanta, GA, USA, 8–11 August 1993; Volume 236, pp. 47–53. [Google Scholar]
- Serizawa, A.; Ida, T.; Takahashi, O.; Michiyoshi, I. MHD effect on NaK-nitrogen two-phase flow and heat transfer in a vertical round tube. Int. J. Multiph. Flow 1990, 16, 761–788. [Google Scholar] [CrossRef]
- Schriener, T.M.; El-Genk, M.S. Convection heat transfer of NaK-78 liquid metal in a circular tube and a tri-lobe channel. Int. J. Heat Mass Transf. 2015, 86, 234–243. [Google Scholar] [CrossRef]
- Ji, Y.L.; Wu, M.K.; Feng, Y.M.; Yu, C.R.; Chu, L.L.; Chang, C.; Li, Y.T.; Xiao, X.; Ma, H.B. An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe. Int. J. Heat Mass Transf. 2020, 149, 119198. [Google Scholar] [CrossRef]
- Wang, C.L.; Guo, Z.P.; Zhang, D.L.; Qiu, S.Z.; Tian, W.X.; Wu, Y.W.; Su, G.H. Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor. Prog. Nucl. Energy 2013, 68, 142–152. [Google Scholar] [CrossRef]
- Li, T.; Jiang, Y.Y.; Li, Z.G.; Liu, Q.; Tang, D.W. Loop thermosiphon as a feasible cooling method for the stators of gas turbine. Appl. Therm. Eng. 2016, 109, 449–453. [Google Scholar] [CrossRef]
- Jia, X.J.; Guo, H.; Guo, Q.; Yan, X.K.; Ye, F.; Ma, C.F. Effect of heating temperature on start-up and heat transfer performance of Na-K alloy heat pipe. Acta Energ. Sol. Sin. 2019, 40, 17–23. (In Chinese) [Google Scholar]
- Zhang, H.Z.; Jia, X.J.; Guo, H.; Guo, Q.; Yan, X.K.; Ye, F.; Ma, C.F. Effect of cooling water parameters on heat transfer performance of sodium-potassium alloy heat pipe. J. Chem. Ind. Eng. 2017, S1, 105–110. (In Chinese) [Google Scholar]
- Guo, H.; Guo, Q.; Yan, X.K.; Ye, F.; Ma, C.F. Experimental investigation on heat transfer performance of high-temperature thermosyphon charged with sodium-potassium alloy. Appl. Therm. Eng. 2018, 139, 402–408. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, H.; Yan, X.K.; Ye, F.; Ma, C.F. Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe. Heat Transf. Eng. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Noie, S.H.; Sarmastiemami, M.R.; Khoshnoodi, M. Effect of inclination angle and filling ratio on thermal performance of a two-phase closed thermosyphon under normal operating conditions. Heat Transfer. Eng. 2007, 28, 365–371. [Google Scholar] [CrossRef]
- Emani, M.R.S.; Noie, S.H.; Khoshnoodi, M.; Mosavian, M.T.H.; Kianifar, A. Investigation of geyser boiling phenomenon in a two-phase closed thermosyphon. Heat Transfer Eng. 2009, 30, 408–415. [Google Scholar] [CrossRef]
- Lin, T.F.; Lin, W.T.; Tsay, Y.L.; Wu, J.C. Experimental investigation of geyser boiling in an annular two phase closed thermosyphon. Int. J. Heat Mass Transfer 1995, 38, 295–307. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Chen, H.; Zhu, Y.A. Combined CFD/visualization investigation of heat transfer behaviors during geyser boiling in two-phase closed thermosyphon. Int. J. Heat Mass Transfer 2018, 121, 703–714. [Google Scholar] [CrossRef]
- Casarosa, C.; Latrofa, E.; Shelginski, A. The geyser effect in a two phase thermosyphon. Int. J. Heat Mass Transfer 1983, 6, 933–941. [Google Scholar] [CrossRef]
- Kujawska, A.; Zajaczkowski, B.; Wilde, L.M.; Buschmann, M.H. Geyser boiling in a thermosyphon with nanofluids and surfactant solution. Int. J. Therm. Sci. 2019, 139, 195–216. [Google Scholar] [CrossRef]
- Morgan, S.K.; Brady, H.F. Elimination of the geyser effect in missiles. Adv. Cryog. Eng. 1962, 7, 206–213. [Google Scholar]
- Howard, F.S. Geysering inhibitor for vertical cryogenic transfer piping. Adv. Cryog. Eng. 1973, 18, 162–169. [Google Scholar]
- Kuncoro, H.; Rao, Y.F.; Fukuda, K. An experimental study on the mechanism of geysering in a closed two-phase thermosyphon. Int. J. Multiph. Flow 1995, 21, 1243–1252. [Google Scholar] [CrossRef]
- Tecchio, C.; Oliveira, J.L.G.; Paiva, K.V.; Mantelli, M.B.H.; Galdolfi, R.; Ribeiro, L.G.S. Geyser boiling phenomenon in two-phase closed loop-thermosyphons. Int. J. Heat Mass Transfer 2017, 111, 29–40. [Google Scholar] [CrossRef]
- Bao, K.L.; Wang, X.H.; Fang, Y.B.; Jia, X.S.; Han, X.H.; Chen, G.M. Effects of the surfactant solution on the performance of the pulsating heat pipe. Appl. Therm. Eng. 2020, 178, 115678. [Google Scholar] [CrossRef]
- Jang, J.H. Startup characteristics of a potassium heat pipe from the frozen state. J. Thermophys. Heat Transf. 1995, 9, 117–122. [Google Scholar] [CrossRef]
- Wang, C.L.; Liu, X.; Liu, M.H.; Tang, S.M.; Tian, Z.X.; Zhang, D.L.; Tian, W.X.; Qiu, S.Z.; Su, G.H. Experimental study on heat transfer limit of high temperature potassium heat pipe for advanced reactors. Ann. Nucl. Energy 2021, 151, 107935. [Google Scholar] [CrossRef]
- Mahan, J.R.; Felske, J.D. Radiation heat transfer: A statistical approach. Appl. Mech. Rev. 2002, 56, B15–B16. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
Melting temperature (0.1 MPa) | −12.6 °C |
Boiling temperature (0.1 MPa) | 785.1 °C |
Vapor pressure (700 °C) | 0.489 kPa |
Density (700 °C) | 731.1 kg/m3 |
Specific heat (700 °C) | 1.01 kJ/(kg·K) |
Viscosity (700 °C) | 1.5 × 10−3 Pa·s |
Latent heat of vaporization (0.1 MPa) | 3453.5 kJ/kg |
Parameters | Specifications |
---|---|
Total length | 1000 mm |
Outer diameter | 25 mm |
Inner diameter | 20 mm |
Working fluid weight | 70 g (about 78 cm3, 25.3% of the heat pipe internal volume) |
Container material | Inconel 600 |
Evaporator section length | 580 mm |
Condenser section length | 330 mm |
Adiabatic section length | 90 mm |
Heating Power | Maximum Temperature of Heat Pipe | Average Temperature of Evaporator Section (Te) | Fluctuation Cycle | Average Temperature of Condenser Section (Tc) | Effective Heat Transfer Quantity |
---|---|---|---|---|---|
800 W | 696.3 °C | 508.1 °C | 3.02 min | 133.0 °C | 461.2 W |
1000 W | 672.7 °C | 510.7 °C | 2.51 min | 146.6 °C | 518.5 W |
1200 W | 679.5 °C | 516.5 °C | 2.20 min | 166.3 °C | 644.2 W |
1400 W | 684.4 °C | 521.2 °C | 2.15 min | 172.8 °C | 793.1 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ye, F.; Guo, H.; Yan, X. Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis. Energies 2021, 14, 7582. https://doi.org/10.3390/en14227582
Zhang H, Ye F, Guo H, Yan X. Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis. Energies. 2021; 14(22):7582. https://doi.org/10.3390/en14227582
Chicago/Turabian StyleZhang, Hongzhe, Fang Ye, Hang Guo, and Xiaoke Yan. 2021. "Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis" Energies 14, no. 22: 7582. https://doi.org/10.3390/en14227582
APA StyleZhang, H., Ye, F., Guo, H., & Yan, X. (2021). Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis. Energies, 14(22), 7582. https://doi.org/10.3390/en14227582