Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data and Sample
3.2. Key Variables
3.3. Research Model
3.4. Kruskal–Wallis One-Way Analysis of Variance
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Linear Regression Models
4.3. The Influence of Climate Zone on Energy Unit Costs by Hospital Activities
5. Conclusions and Implications
6. Limitation and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knoop, K.; Lechtenböhmer, S. The potential for energy efficiency in the EU Member States—A comparison of studies. Renew. Sustain. Energy Rev. 2017, 68, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.Y.; Blok, K.; van der Leun, K. Transition to a fully sustainable global energy system. Energy Strateg. Rev. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Dylewski, R.; Adamczyk, J. Study on ecological cost-effectiveness for the thermal insulation of building external vertical walls in Poland. J. Clean. Prod. 2016, 133, 467–478. [Google Scholar] [CrossRef]
- Bawaneh, K.; Nezami, F.G.; Rasheduzzaman, M.; Deken, B. Energy Consumption Analysis and Characterization of Healthcare Facilities in the United States. Energies 2019, 12, 3775. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.H.; Buettner, P.G.; Canyon, D.V. The Energy Burden and Environmental Impact of Health Services. Am. J. Public Health 2012, 102, e76. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Alcamo, G.; Nelli, L.C. Energy-Saving Solutions for Five Hospitals in Europe. In Mediterranean Green Buildings & Renewable Energy; Sel. Pap. from World Renew. Energy Network’s Med Green Forum; Springer: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar] [CrossRef]
- Bujak, J.W. Production of waste energy and heat in hospital facilities. Energy 2015, 91, 350–362. [Google Scholar] [CrossRef]
- Singer, B.C. Hospital Energy Benchmarking Guidance—Version 1.0; Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Gwiazda, M.; Kolbowska, A. Polacy o Zmianach Klimatu; Centrum Badania Opinii Społecznej: Warsaw, Poland, 2009. [Google Scholar]
- Pietrzak, M.B.; Igliński, B.; Kujawski, W.; Iwański, P. Energy Transition in Poland—Assessment of the Renewable Energy Sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Yohanis, Y.G.; Mondol, J.D.; Wright, A.; Norton, B. Real-life energy use in the UK: How occupancy and dwelling characteristics affect domestic electricity use. Energy Build. 2008, 40, 1053–1059. [Google Scholar] [CrossRef]
- Wiesmann, D.; Lima Azevedo, I.; Ferrão, P.; Fernández, J.E. Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. Energy Policy 2011, 39, 2772–2779. [Google Scholar] [CrossRef]
- González, A.G.; García-Sanz-Calcedo, J.; Salgado, D.R. Evaluation of Energy Consumption in German Hospitals: Benchmarking in the Public Sector. Energies 2018, 11, 2279. [Google Scholar] [CrossRef] [Green Version]
- Thinate, N.; Wongsapai, W.; Damrongsak, D. Energy Performance Study in Thailand Hospital Building. Energy Procedia 2017, 141, 255–259. [Google Scholar] [CrossRef]
- Aranda, A.; Ferreira, G.; Mainar-Toledo, M.D.; Scarpellini, S.; Sastresa, E.L. Multiple regression models to predict the annual energy consumption in the Spanish banking sector. Energy Build. 2012, 49, 380–387. [Google Scholar] [CrossRef]
- González González, A.; García-Sanz-Calcedo, J.; Salgado, D.R. A quantitative analysis of final energy consumption in hospitals in Spain. Sustain. Cities Soc. 2018, 36, 169–175. [Google Scholar] [CrossRef]
- Salem Szklo, A.; Soares, J.B.; Tolmasquim, M.T. Energy consumption indicators and CHP technical potential in the Brazilian hospital sector. Energy Convers. Manag. 2004, 45, 2075–2091. [Google Scholar] [CrossRef]
- García-Sanz-Calcedo, J.; Gómez-Chaparro, M.; Sanchez-Barroso, G. Electrical and thermal energy in private hospitals: Consumption indicators focused on healthcare activity. Sustain. Cities Soc. 2019, 47, 101482. [Google Scholar] [CrossRef]
- MacNeill, A.J.; Lillywhite, R.; Brown, C.J. The impact of surgery on global climate: A carbon footprinting study of operating theatres in three health systems. Lancet Planet. Heal. 2017, 1, e381–e388. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, N.; Kaltschmitt, M.; Dzukowski, F. Electrical energy consumption and utilization time analysis of hospital departments and large scale medical equipment. Energy Build. 2016, 131, 172–183. [Google Scholar] [CrossRef]
- Chong, H. Building vintage and electricity use: Old homes use less electricity in hot weather. Eur. Econ. Rev. 2012, 56, 906–930. [Google Scholar] [CrossRef] [Green Version]
- Blázquez, L.; Boogen, N.; Filippini, M. Residential electricity demand in Spain: New empirical evidence using aggregate data. Energy Econ. 2013, 36, 648–657. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D.P. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers. Manag. 2007, 48, 1737–1750. [Google Scholar] [CrossRef]
- Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Moustris, K.P.; Nastos, P.T.; Bartzokas, A.; Larissi, I.K.; Zacharia, P.T.; Paliatsos, A.G. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theor. Appl. Climatol. 2014, 122, 517–529. [Google Scholar] [CrossRef]
- Rehdanz, K. Determinants of residential space heating expenditures in Germany. Energy Econ. 2007, 29, 167–182. [Google Scholar] [CrossRef]
- Hill, D.R. Regional determinants of residential energy expenditures and the principal-agent problem in Austria. REGION 2015, 2, Y1–Y16. [Google Scholar] [CrossRef]
- Kameni Nematchoua, M.; Yvon, A.; Kalameu, O.; Asadi, S.; Choudhary, R.; Reiter, S. Impact of climate change on demands for heating and cooling energy in hospitals: An in-depth case study of six islands located in the Indian Ocean region. Sustain. Cities Soc. 2018, 44, 629–645. [Google Scholar] [CrossRef]
- Romero-Jordán, D.; Peñasco, C.; Del Río, P. Analysing the determinants of household electricity demand in Spain. An econometric study. Int. J. Electr. Power Energy Syst. 2014, 63, 950–961. [Google Scholar] [CrossRef]
- Hong, T.; Chang, W.K.; Lin, H.W. A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data. Appl. Energy 2013, 111, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Auffhammer, M.; Mansur, E.T. Measuring climatic impacts on energy consumption: A review of the empirical literature. Energy Econ. 2014, 46, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Bessec, M.; Fouquau, J. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach. Energy Econ. 2008, 30, 2705–2721. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, L.; Long, H. Climatic impacts on energy consumption: Intensive and extensive margins. Energy Econ. 2018, 71, 332–343. [Google Scholar] [CrossRef]
- Mansur, E.T.; Mendelsohn, R.; Morrison, W. Climate change adaptation: A study of fuel choice and consumption in the US energy sector. J. Environ. Econ. Manage. 2008, 55, 175–193. [Google Scholar] [CrossRef]
- Schmeltz, M.T.; Petkova, E.P.; Gamble, J.L. Economic Burden of Hospitalizations for Heat-Related Illnesses in the United States, 2001–2010. Int. J. Environ. Res. Public Health 2016, 13, 894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagai, J.S.; Grossman, E.; Navon, L.; Sambanis, A.; Dorevitch, S. Hospitalizations for heat-stress illness varies between rural and urban areas: An analysis of Illinois data, 1987–2014. Environ. Health 2017, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Narowski, P.G. Parametry obliczeniowe powietrza zewnętrznego i strefy klimatyczne Polski do obliczania mocy w systemach chłodzenia, wentylacji i klimatyzacji budynków. Instal 2020, 3, 21–30. [Google Scholar] [CrossRef]
- Strzeszewski, M.; Wereszczyński, P. Norma PN–EN 12831 Nowa Metoda Obliczania Projektowego. Poradnik; Rettig Heating Sp. z o.o.: Warsaw, Poland, 2009. [Google Scholar]
- Narowski, P. Ewolucja kryteriów wyboru i wartości temperatury obliczeniowej powietrza zewnętrznego dla ogrzewnictwa w Polsce. Fiz. Budowli Teor. Prakt. 2011, 6, 61–67. [Google Scholar]
- Borozan, D. Regional-level household energy consumption determinants: The European perspective. Renew. Sustain. Energy Rev. 2018, 90, 347–355. [Google Scholar] [CrossRef]
- Fazeli, R.; Ruth, M.; Davidsdottir, B. Temperature response functions for residential energy demand—A review of models. Urban Clim. 2016, 15, 45–59. [Google Scholar] [CrossRef]
- Tzikopoulos, A.F.; Karatza, M.C.; Paravantis, J.A. Modeling energy efficiency of bioclimatic buildings. Energy Build. 2005, 37, 529–544. [Google Scholar] [CrossRef]
- Tatarczak, A.; Boichuk, O. The multivariate techniques in the evaluation of unemployment analysis of Polish regions. Oeconomia Copernic. 2018, 9, 361–380. [Google Scholar] [CrossRef]
- Rollnik-Sadowska, E.; Dąbrowska, E. Cluster analysis of effectiveness of labour market policy in the European Union. Oeconomia Copernic. 2018, 9, 143–158. [Google Scholar] [CrossRef]
- Gajdos, A.; Arendt, L.; Balcerzak, A.P.; Pietrzak, M.B. Future trends of labour market polarisation in Poland. The Pperspective of 2025. Trans. Bus. Econ. 2020, 19, 114–135. [Google Scholar]
- Chocholatá, M.; Furková, A. The analysis of employment rates in the context of spatial connectivity of the EU regions. Equilibrium. Q. J. Econ. Econ. Policy 2018, 13, 181–213. [Google Scholar] [CrossRef]
- Ji, R.; Qu, S. Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China. Sustainability 2019, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
- Teke, A.; Zor, K.; Timur, O. A simple methodology for capacity sizing of cogeneration and trigeneration plants in hospitals: A case study for a university hospital. J. Renew. Sustain. Energy 2015, 7, 053102. [Google Scholar] [CrossRef]
- Raymundo, A.V.; Twomey, J. Climate Effects on Hospitals’ Energy Consumption. McNair Sch. Progr. J. Res. Progr. 2013, 19, 91–94. [Google Scholar]
- Lin, S.; Hsu, W.-H.; Van Zutphen, A.R.; Saha, S.; Luber, G.; Hwang, S.-A. Excessive Heat and Respiratory Hospitalizations in New York State: Estimating Current and Future Public Health Burden Related to Climate Change. Environ. Health Perspect. 2012, 120, 1571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Ye, D.; Li, N.; Bi, P.; Tong, S.; Wang, Y.; Cheng, Y.; Li, Y.; Yao, X. High temperatures and emergency department visits in 18 sites with different climatic characteristics in China: Risk assessment and attributable fraction identification. Environ. Int. 2020, 136, 105486. [Google Scholar] [CrossRef] [PubMed]
- Zinecker, M.; Doubravský, K.; Balcerzak, A.P.; Pietrzak, M.B.; Dohnal, M. The Covid-19 disease and policy response to mitigate the economic impact in the EU. Technol. Econ. Dev. Econ. 2021, 27, 742–762. [Google Scholar] [CrossRef]
- Kiseľáková, D.; Šofranková, B.; Onuferová, E.; Čabinová, V. The evaluation of competitive position of EU-28 economies with using global multi-criteria indices. Equilibrium. Q. J. Econ. Econ. Policy 2019, 14, 441–462. [Google Scholar] [CrossRef]
- Chen, C.R.; Shih, S.C.; Hu, S.C. Short-term electricity forecasting of air-conditioners of hospital using artificial neural networks. In Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, China, 18 August 2005; Volume 2005, pp. 1–5. [Google Scholar] [CrossRef]
- Li, C.; Hong, T.; Yan, D. An insight into actual energy use and its drivers in high-performance buildings. Appl. Energy 2014, 131, 394–410. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Antolin, M.-M.; del Río, J.M.; Costanzo, V.; Nocera, F.; Gonzalez-Lezcano, R.-A. Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones. Sustainability 2019, 11, 4816. [Google Scholar] [CrossRef] [Green Version]
- Grann, B. A Building Information Model (BIM) Based Lifecycle Assessment of a University Hospital Building Built to Passive House Standards. Master’s Thesis, Institutt for Energi-og Prosessteknikk, Trondheim, Norway, 2012. [Google Scholar]
- Koch, C.; Buser, M. Creating State of the Art? A Passive House University Hospital North of the Polar Circle. In Proceedings of the Cold Climate HVAC 2018, Kiruna, Sweden, 12–15 March 2018; Springer: Cham, Switzerland, 2018; pp. 1065–1073. [Google Scholar]
- Kong, X.; Ren, Y.; Ren, J.; Duan, S.; Guo, C. Energy-saving performance of respiration-type double-layer glass curtain wall system in different climate zones of China: Experiment and simulation. Energy Build. 2021, 252, 111464. [Google Scholar] [CrossRef]
- Mora, R.; English, M.J.M.; Athienitis, A.K. Assessment of thermal comfort during surgical operations. Discussion. ASHRAE Trans. 2001, 101, 52. [Google Scholar]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Sánchez-Barroso, G.; Sanz-Calcedo, J.G. Evaluation of HVAC Design Parameters in High-Performance Hospital Operating Theatres. Sustainability 2019, 11, 1493. [Google Scholar] [CrossRef] [Green Version]
- Sabūnas, A. Estimation of the Impact of Different Residential Building Parameters and Climate Change for Energy Consumption in Kaunas, Lithuania; VDU—Vytauto Didžiojo Universitetas: Kaunas, Lithuania, 2017. [Google Scholar]
- Sineviciene, L.; Sotnyk, I.; Kubatko, O. Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies. Energy Environ. 2017, 28, 870–884. [Google Scholar] [CrossRef]
- Kantola, M.; Saari, A. Renewable vs. traditional energy management solutions—A Finnish hospital facility case. Renew. Energy 2013, 57, 539–545. [Google Scholar] [CrossRef]
- Bobinaite, V.; Tarvydas, D. Financing instruments and channels for the increasing production and consumption of renewable energy: Lithuanian case. Renew. Sustain. Energy Rev. 2014, 38, 259–276. [Google Scholar] [CrossRef]
- Zinecker, M.; Skalicka, M.; Balcerzak, A.P.; Pietrzak, M.B. Business angels in the Czech Republic: Characteristics and a classification with policy implications. Econ. Res. Istraživanja 2021, ahead of print. 1–26. [Google Scholar] [CrossRef]
- Zinecker, M.; Skalicka, M.; Balcerzak, A.P.; Pietrzak, M.B. Identifying the impact of external environment on business angel activity. Econ. Res. Istraživanja 2021, ahead of print. 1–23. [Google Scholar] [CrossRef]
- De Rubeis, T.; Falasca, S.; Curci, G.; Paoletti, D.; Ambrosini, D. Sensitivity of heating performance of an energy self-sufficient building to climate zone, climate change and HVAC system solutions. Sustain. Cities Soc. 2020, 61, 102300. [Google Scholar] [CrossRef]
- Capeluto, I.G.; Ochoa, C.E. Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system. Energy 2014, 76, 375–384. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Oliveira, M.; Rubio-Bellido, C.; Marín, D. A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope. Sustainability 2019, 11, 5574. [Google Scholar] [CrossRef] [Green Version]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Towards nearly zero-energy buildings in Mediterranean countries: Fifteen years of implementing the Energy Performance of Buildings Directive in Spain (2006–2020). J. Build. Eng. 2021, 44, 102962. [Google Scholar] [CrossRef]
- Kautsch, M.; Lichon, M.; Sobieralaska, S. Energia odnawialna w szpitalach w Polsce. Przedsiębiorczość Zarządzanie 2013, 14, 193–203. [Google Scholar]
- GUS Data Produkcja Energii Elektrycznej w Polsce, Rynek Elektryczny. Available online: https://www.rynekelektryczny.pl/produkcja-energii-elektrycznej-w-polsce/ (accessed on 30 October 2021).
- European Commission. EUROPE 2020 A Strategy for Smart, Sustainable and Inclusive Growth; OPOCE: Brussels, Belgium, 2020. [Google Scholar]
- Karliner, J.; Slotterback, S.; Boyd, R.; Ashby, B.; Steele, K.; Wang, J. Health care’s climate footprint: The health sector contribution and opportunities for action. Eur. J. Public Health 2020, 30, ckaa165.839. [Google Scholar] [CrossRef]
- Teke, A.; Timur, O. Overview of Energy Savings and Efficiency Strategies at the Hospitals. Int. J. Econ. Manag. Eng. 2014, 8, 242–248. [Google Scholar]
- Buonomano, A.; Calise, F.; Ferruzzi, G.; Palombo, A. Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings. Energy 2014, 78, 555–572. [Google Scholar] [CrossRef]
- Teke, A.; Timur, O. Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. Renew. Sustain. Energy Rev. 2014, 33, 224–235. [Google Scholar] [CrossRef]
- Fifield, L.J.; Lomas, K.J.; Giridharan, R.; Allinson, D. Hospital wards and modular construction: Summertime overheating and energy efficiency. Build. Environ. 2018, 141, 28–44. [Google Scholar] [CrossRef]
- Franco, A.; Shaker, M.; Kalubi, D.; Hostettler, S. A review of sustainable energy access and technologies for healthcare facilities in the Global South. Sustain. Energy Technol. Assessments 2017, 22, 92–105. [Google Scholar] [CrossRef]
Climate Zone | Temperature |
---|---|
I | −16 |
II | −18 |
III | −20 |
IV | −22 |
V | −24 |
Variables | Climate Zone | Total | |||
---|---|---|---|---|---|
I | II | III | IV | ||
n (%) | |||||
Hospital years * | 249 (7.57) | 679 (20.64) | 2047 (62.24) | 314 (9.55) | 3289 |
DAYS | 20,160,208 (8.17) | 55,261,425 (22.40) | 153,752,238 (62.33) | 17,504,144 (7.10) | 246,678,015 |
BEDS | 73,282 (8.29) | 199,434 (22.55) | 546253 (61.77) | 65388 (7.39) | 884,357 |
PAT | 3,596,544 (8.63) | 9,697,673 (23.26) | 25,266,118 (60.60) | 3,134,437 (7.52) | 41,694,772 |
SURG | 1,672,340 (10.38) | 3,647,777 (22.65) | 9,614,112 (59.70) | 117,0610 (7.27) | 16,104,839 |
NURS | 71,208 (8.42) | 184,516 (21.83) | 528,267 (62.50) | 61,286 (7.25) | 845,277 |
DOC | 41,056 (9.14) | 98,309 (21.88) | 278,273 (61.95) | 31,577 (7.03) | 449,215 |
Variables | Climate Zone | Total | |||
---|---|---|---|---|---|
I | II | III | IV | ||
Mean (SD) Median (Q1–Q3) | |||||
EEC (PLN) | 1,034,553 (122,6397) 659,786 (306,546–1,201,155) | 1,025,393 (980,078) 717,520 (318,689–1,407,173) | 910,042 (1,177,533) 598,957 (338,093–1,028,006) | 665,117 (779,879) 389,828 (244,459–828,121) | 919,899 (1,114,355) 597,540 (315,505–1,114,377) |
TEC (PLN) | 975,732 (1,302,336) 491,888 (244,066–1,063,739) | 922,536 (1,018,291) 545,981 (252,885–1,255,279) | 821,019 (1,023,326) 515,932 (240,081–1,032,906) | 701,529 (726,990) 435,569 (314,578–862,438) | 842,282 (1,023,982) 505,367 (253,492–1,055,089) |
DAYS | 93,334 (83,881) 64,880 (28,156–140,736) | 91,341 (69,644) 68,910 (34,060–134,650) | 84,946 (64,884) 69,227 (36,910–111,610) | 62,738 (52,114) 47,767 (29,282–77,934) | 84,769 (66,825) 66,627 (34,276–115,936) |
BEDS | 339 (292) 260 (110–434) | 330 (266) 243 (136–488) | 301 (240) 256 (121–408) | 234 (200) 176 (105–311) | 303 (248) 243 (123–419) |
PAT | 15,705 (13,958) 11,021 (5612–25,441) | 15,976 (11,547) 12,313 (6457–24,156) | 13,806 (11,333) 11,382 (5987–17,635) | 11,234 (97,707) 7968 (5044–16,585) | 14,157 (11,537) 11,021 (5932–19,004) |
SURG | 6716 (9392) 2866 (694–8756) | 5372 (6274) 2787 (1114–8986) | 4696 (6142) 2718 (631–6356) | 3728 (4771) 2035 (366–4471) | 4896 (6392) 2667 (705–6858) |
NURS | 311 (316) 187 (101–423) | 304 (253) 220 (116–454) | 288 (267) 218 (102–379) | 219 (204) 154 (89–286) | 287 (264) 206 (106–395) |
DOC | 179 (211) 102 (50–234) | 162 (155) 113 (51–238) | 152 (157) 107 (53–195) | 113 (131) 64 (39–153) | 152 (160) 101 (50–202) |
Variables | EEC | TEC | ||||||
---|---|---|---|---|---|---|---|---|
B | SE | t | p-Value | B | SE | t | p-Value | |
(Constant) | −89,543.40 | 20,655.90 | −4.335 | p < 0.001 | −99,791.80 | 21,668.51 | −4.605 | p < 0.001 |
BEDS | 660.10 | 115.63 | 5.708 | p < 0.001 | 1793.30 | 131.46 | 13.641 | p < 0.001 |
PAT | −13.70 | 3.16 | −4.321 | p < 0.001 | ||||
SURG | 23.00 | 3.24 | 7.096 | p < 0.001 | 18.00 | 3.56 | 5.067 | p < 0.001 |
NURS | 437.90 | 99.14 | 4.416 | p < 0.001 | ||||
DOC | 3389.20 | 169.77 | 19.964 | p < 0.001 | 2797.40 | 171.69 | 16.293 | p < 0.001 |
R2 | 0.710 | 0.630 |
Climate Zone | I | II | III | IV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | B | SE | t | p-Value | B | SE | t | p-Value | B | SE | t | p-Value | B | SE | t | p-Value |
(Constant) | 54,723.96 | 45,449.20 | 1.204 | NS | 56,628.14 | 40,665.19 | 1.392 | NS | −173,399 | 29,507.34 | −5.876 | p<0.001 | −78,941.9 | 32,153.37 | −2.455 | p < 0.01 |
DAYS | 5.85 | 1.17 | 5.013 | p < 0.001 | 5.03 | 0.73 | 6.875 | p < 0.001 | −5 | 1.26 | −4.283 | p < 0.001 | 4.8 | 0.87 | 5.484 | p < 0.001 |
BEDS | 2057 | 352.99 | 5.827 | p < 0.001 | ||||||||||||
PAT | −39.86 | 7.18 | −5.553 | p < 0.001 | ||||||||||||
SURG | 28.65 | 7.03 | 4.076 | p < 0.001 | 28.49 | 7.18 | 3.967 | p < 0.001 | 19 | 4.47 | 4.242 | p < 0.001 | ||||
NURS | 471 | 134.65 | 3.495 | p < 0.001 | ||||||||||||
DOC | 4714.66 | 433.29 | 10.881 | p < 0.001 | 2117.82 | 330.45 | 6.408 | p < 0.001 | 3854 | 237.13 | 16.254 | p < 0.001 | 4045.2 | 337.29 | 11.993 | p < 0.001 |
R2 | 0.903 | 0.677 | 0.688 | 0.868 |
Climate Zone | I | II | III | IV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | B | SE | t | p-Value | B | SE | t | p-Value | B | SE | t | p-Value | B | SE | t | p-Value |
(Constant) | −29,521.6 | 88,032.76 | −0.335 | NS | −143,060 | 45,072.70 | −3.173 | p < 0.01 | −151,998 | 28,734.94 | −5.289 | p < 0.001 | 10,781.47 | 35,420.74 | 0.304 | NS |
DAYS | −6 | 1.23 | −5.097 | p < 0.001 | 5.70 | 0.96 | 5.941 | p < 0.001 | ||||||||
BEDS | 4241.0 | 657.95 | 6.445 | p < 0.001 | 1710 | 186.60 | 9.165 | p < 0.001 | 3015 | 329.19 | 9.160 | p < 0.001 | ||||
PAT | −93.5 | 13.43 | −6.960 | p < 0.001 | ||||||||||||
SURG | 42.4 | 12.16 | 3.487 | p < 0.001 | 38 | 7.34 | 5.155 | p < 0.001 | ||||||||
NURS | −1290.5 | 406.47 | −3.174 | p < 0.01 | ||||||||||||
DOC | 5616.9 | 772.39 | 7.272 | p < 0.001 | 1234 | 348.20 | 3.543 | p < 0.001 | 3200 | 183.67 | 17.420 | p < 0.001 | 3086.73 | 371.56 | 8.307 | p < 0.001 |
R2 | 0.740 | 0.657 | 0.608 | 0.813 |
Variables | Climate Zone | p | |||
---|---|---|---|---|---|
I | II | III | IV | ||
Mean (SD) Median (Q1–Q3) | |||||
EECP (PLN/pateint) | 85.68 (169.29) 56.29 (43.89–75.53) | 73.40 (82.77) 54.79 (40.89–74. 70) | 84.15 (174.46) 54.57 (42.05–77.11) | 60.57 (30.35) 52.51 (39.31–69.02) | NS |
EECD (PLN/day) | 12.13 (9.76) 10.21 (7.65–13.90) | 11.34 (7.12) 9.68 (7.63–12.20) | 13.10(39.46) 9.01 (6.58–12.54) | 10.21 (5.47) 8.84 (6.84–11.64) | p < 0.001 |
EECS (PLN/surgery) | 1338.04 (16,068.53) 158.07 (103.77–253.68) | 1299.32 (13,898.40) 170.78 (122.16–251.48) | 264.44 (887.92) 168.30 (113.38–263.94) | 2249.96 (30,949.91) 153.37 (109.23–232.67) | NS |
TECP (PLN/pateint) | 80.59 (143.44) 60.48 (35.05–89.08) | 76.04 (197.24) 53.12 (34.11–77.01) | 80.25 (153.91) 54.76 (34.22–80.84) | 69.53 (38.70) 59.55 (48.53–77.14) | p< 0.001 |
TECD (PLN/day) | 11.81 (8.17) 10.85 (5.91–16.15) | 10.21 (9.38) 9.381 (5.95–13.00) | 11.61 (29.80) 8.74 (5.46–12.57) | 11.97 (7.10) 10.25 (8.01–13.77) | p< 0.001 |
TECS (PLN/surgery) | 1 632.21 (19902.77) 161.75 (43.89 –278.65) | 543.39 (4355.41) 151.78 (92.01–257.51) | 252.72 (987.43) 153.68 (83.20–265.71) | 1496.19 (18,335.59) 177.87 (120.75–278.32) | p< 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cygańska, M.; Kludacz-Alessandri, M. Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland. Energies 2021, 14, 7585. https://doi.org/10.3390/en14227585
Cygańska M, Kludacz-Alessandri M. Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland. Energies. 2021; 14(22):7585. https://doi.org/10.3390/en14227585
Chicago/Turabian StyleCygańska, Małgorzata, and Magdalena Kludacz-Alessandri. 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland" Energies 14, no. 22: 7585. https://doi.org/10.3390/en14227585
APA StyleCygańska, M., & Kludacz-Alessandri, M. (2021). Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland. Energies, 14(22), 7585. https://doi.org/10.3390/en14227585