Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment
Abstract
:1. Introduction
2. Methods
2.1. Experimental Conditions
2.2. Experimental Instruments and Protocol
2.3. Statistical Methods
3. Results
3.1. Participants’ Profiles
3.2. Thermal Sensation
3.3. P300
3.4. Reaction Time
3.5. Uchida–Kraepelin Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damiati, S.A.; Zaki, S.A.; Rijal, H.B.; Wonorahardjo, S. Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Build. Environ. 2016, 109, 208–223. [Google Scholar] [CrossRef]
- Mustapa, M.S.; Zaki, S.A.; Rijal, H.B.; Hagishima, A.; Ali, M.S.M. Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer. Build. Environ. 2016, 105, 332–342. [Google Scholar] [CrossRef]
- Hancock, P.A.; Vasmatzidis, I. Effects of heat stress on cognitive performance: The current state of knowledge. Int. J. Hyperth. 2003, 19, 355–372. [Google Scholar] [CrossRef]
- Hocking, C.; Silberstein, R.B.; Lau, W.M.; Stough, C.; Roberts, W. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 128, 719–734. [Google Scholar] [CrossRef]
- Kazama, A.; Takatsu, S.; Hasegawa, H. Effect of increase in body temperature on cognitive function during prolonged exercise. Jpn. J. Phys. Fit. Sport. Med. 2012, 61, 459–467. [Google Scholar] [CrossRef]
- Shibasaki, M.; Namba, M.; Oshiro, M.; Crandall, C.G.; Nakata, H. The effect of elevations in internal temperature on event-related potentials during a simple cognitive task in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R33–R38. [Google Scholar] [CrossRef] [Green Version]
- Castellani, J.W.; Tipton, M.J. Cold stress effects on exposure tolerance and exercise performance. Compr. Physiol. 2016, 6, 443–469. [Google Scholar] [CrossRef]
- Nakata, H.; Kobayashi, F.; Lawley, J.S.; Kakigi, R.; Shibasaki, M. Effects of whole body skin cooling on human cognitive processing: A study using SEPs and ERPs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R432–R441. [Google Scholar] [CrossRef]
- Muller, M.D.; Gunstad, J.; Alosco, M.L.; Miller, L.A.; Updegraff, J.; Spitznagel, M.B.; Glickman, E. Acute Cold Exposure and Cognitive Function: Evidence for Sustained Impairment. Ergonomics 2012, 55, 792–798. [Google Scholar] [CrossRef]
- Taylor, L.; Watkins, S.L.; Marshall, H.; Dascombe, B.J.; Foster, J. The impact of different environmental conditions on cognitive function: A focused review. Front. Physiol. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Watkins, S.L.; Castle, P.; Mauger, A.R.; Sculthorpe, N.; Fitch, N.; Aldous, J.; Brewer, J.; Midgley, A.W.; Taylor, L. The effect of different environmental conditions on the decision-making performance of soccer goal line officials. Res. Sport. Med. 2014, 22, 425–437. [Google Scholar] [CrossRef]
- Gaoua, N. Cognitive function in hot environments: A question of methodology. Scand. J. Med. Sci. Sport. 2010, 20, 60–70. [Google Scholar] [CrossRef]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef]
- Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar] [CrossRef]
- Polich, J.; Geisler, M.W. P300 seasonal variation. Biol. Psychol. 1991, 32, 173–179. [Google Scholar] [CrossRef]
- Deldin, P.J.; Duncan, C.C.; Miller, G.A. Season, gender, and P300. Biol. Psychol. 1994, 39, 15–28. [Google Scholar] [CrossRef]
- Brennen, T. New Ideas in Psychology Is cognition seasonal ? New Ideas Psychol. 2021, 61, 100852. [Google Scholar] [CrossRef]
- Wijayanto, T.; Toramoto, S.; Maeda, Y.; Son, S.Y.; Umezaki, S.; Tochihara, Y. Cognitive performance during passive heat exposure in Japanese males and tropical Asian males from Southeast Asian living in Japan. J. Physiol. Anthropol. 2017, 36, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, J.D. Task performance in heat: A review. Ergonomics 1995, 38, 154–165. [Google Scholar] [CrossRef]
- BMKG Climate Change Extreem in Indonesia. Available online: https://www.bmkg.go.id/iklim/?p=ekstrem-perubahan-iklim&lang=ID (accessed on 20 January 2021).
- Japan Meteorology Agency General Information on Climate of Japan. Available online: https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist.html (accessed on 5 March 2021).
- Japan Meteorology Agency Tables of Monthly Climate Statistics. Available online: http://www.data.jma.go.jp/obd/stats/data/en/smp/index.html (accessed on 20 January 2020).
- Ohayon, M.M.; Partinen, M. Insomnia and global sleep dissatisfaction in Finland. J. Sleep Res. 2002, 11, 339–346. [Google Scholar] [CrossRef]
- González-Hidalgo, G.; Sánchez-Flores, H.; López-Castellanos, G. Prueba de esfuerzo a 44 °C y 80% de humedad. (Spanish). Rev. Medica IMSS 2011, 49, 487–492. [Google Scholar]
- Fujii, H.; Fukuda, S.; Narumi, D.; Ihara, T.; Watanabe, Y. Fatigue and sleep under large summer temperature differences. Environ. Res. 2015, 138, 17–21. [Google Scholar] [CrossRef]
- Cui, W.; Cao, G.; Park, J.H.; Ouyang, Q.; Zhu, Y. Influence of indoor air temperature on human thermal comfort, motivation and performance. Build. Environ. 2013, 68, 114–122. [Google Scholar] [CrossRef]
- Roelofsen, P. The impact of office environments on employee performance: The design of the workplace as a strategy for productivity enhancement. J. Facil. Manag. 2002, 1, 247–264. [Google Scholar] [CrossRef]
- Lan, L.; Wargocki, P.; Lian, Z. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. 2011, 43, 1057–1062. [Google Scholar] [CrossRef]
- Kaida, K.; Takeda, Y.; Tsuzuki, K. The Relationship between Flow, Sleepiness and Cognitive Performance: The Effects of Short Afternoon Nap and Bright Light Exposure. Ind. Health 2012, 50, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Pepler, R.D. Warmth and performance: An investigation in the tropics. Ergonomics 1958, 2, 63–88. [Google Scholar] [CrossRef]
- Radakovic, S.S.; Maric, J.; Surbatovic, M.; Radjen, S.; Stefanova, E.; Stankovic, N.; Filipovic, N. Effects of acclimation on cognitive performance in soldiers during exertional heat stress. Mil. Med. 2007, 172, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Karyono, T.H.; Bahri, G. Energy efficient strategies for JSX building in Jakarta, Indonesia. In Proceedings of the International Conference “Passive and Low Energy Cooling 207 for the Built Environment”, Santorini, Greece, 19–21 May 2005. [Google Scholar]
- Aqilah, N.; Zaki, S.A.; Hagishima, A.; Rijal, H.B.; Yakub, F. Analysis on electricity use and indoor thermal environment for typical air-conditioning residential buildings in Malaysia. Urban Clim. 2021, 37, 100830. [Google Scholar] [CrossRef]
- Nakashima, Y. Climate Change Policies in Japan/What Are COOL BIZ and WARM BIZ. Available online: https://www.env.go.jp/en/focus/jeq/issue/vol03/feature.html (accessed on 7 October 2021).
- Karyono, T.H. Report on thermal comfort and building energy studies in Jakarta—Indonesia. Build. Environ. 2000, 35, 77–90. [Google Scholar] [CrossRef]
- Alfata, M.N.F.; Sujatmiko, W.; Widyahantari, R. Thermal Comfort Study in the Office Buildings in Medan, Jakarta, Surabaya and Makassar, Final Report of Innovation Research: The Effect of Air Movement on Thermal Comfort in Some Office Buildings in Some Big Cities in Indonesia (Unpublished annual report); Indonesian Ministry of Public Works: Jakarta, Indonesia, 2012. [Google Scholar]
- Badan Standardisasi Nasional (BSN). Standar Nasional Indonesia (The Indonesian National Standard)-SNI 6390:2011 Konservasi Energi Sistem Tata Udara Bangunan Gedung; BSN: Jakarta, Indonesia, 2011. [Google Scholar]
- Ramanathan, N.L. A New Weighting System for Mean Surface Temperature of the Human Body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Danmark, 1970. [Google Scholar]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Böcker, K.B.E.; van Avermaete, J.A.G.; van den Berg-Lenssen, M.M.C. The international 10-20 system revisited: Cartesian and spherical co-ordinates. Brain Topogr. 1994, 6, 231–235. [Google Scholar] [CrossRef]
- Lim, J.; Dinges, D.F. Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 2008, 1129, 305–322. [Google Scholar] [CrossRef]
- Kay, M.; Rector, K.; Consolvo, S.; Greenstein, B.; Wobbrock, J.O.; Watson, N.F.; Kientz, J.A. PVT-touch: Adapting a reaction time test for touchscreen devices. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013; pp. 248–251. [Google Scholar] [CrossRef]
- Basner, M.; Dinges, D.F. Maximizing sensitivity of PVT to Sleep Loss (Basner, Dinges). Sleep 2011, 34, 581–591. [Google Scholar] [CrossRef]
- Loh, S.; Lamond, N.; Dorrian, J.; Roach, G.; Dawson, D. The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav. Res. Methods Instrum. Comput. 2004, 36, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, S.; Yanai, H.; Aoki, T.; Tamai, H.; Tanaka, Y.; Hokugoh, K. A factor analytic study of the items for the personality description based on the principle of the three traits theory for the work curve of addition of the Uchida-Kraepelin psychodiagnostic test. Psychol. Res. 1985, 56, 1985–1986. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Kanai, A.; Shoji, N. The effectiveness of the Uchida-Kraepelin test for psychological stress: An analysis of plasma and salivary stress substances. Biopsychosoc. Med. 2009, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Freeman, F.S. Theory and Practice of Psychological Testing; Henry Holt: Oxford, UK, 1950. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Gautam, B.; Rijal, H.B.; Shukuya, M.; Imagawa, H. A field investigation on the wintry thermal comfort and clothing adjustment of residents in traditional Nepalese houses. J. Build. Eng. 2019, 26, 100886. [Google Scholar] [CrossRef]
- Jowkar, M.; Rijal, H.B.; Brusey, J.; Montazami, A.; Carlucci, S.; Lansdown, T.C. Energy & Buildings Comfort temperature and preferred adaptive behaviour in various classroom types in the UK higher learning environments. Energy Build. 2020, 211, 109814. [Google Scholar] [CrossRef]
- Rijal, H.B. Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season. Buildings 2014, 4, 437–452. [Google Scholar] [CrossRef]
- Griffiths, I.D. Solar Energy Applications to Buildings and Solar Radiation Data; Steemers, T.C., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1988; Volume 40. [Google Scholar]
- Humphreys, M.A.; Rijal, H.B.; Nicol, J.F. Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Build. Environ. 2013, 63, 40–55. [Google Scholar] [CrossRef]
- Rijal, H.B.; Honjo, M.; Kobayashi, R.; Nakaya, T. Investigation of comfort temperature, adaptive model and the window-opening behaviour in Japanese houses. Archit. Sci. Rev. 2013, 56, 54–69. [Google Scholar] [CrossRef]
- Nakano, J.; Tanabe, S.I.; Kimura, K.I. Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy Build. 2002, 34, 615–621. [Google Scholar] [CrossRef]
- Draganova, V.; Tsuzuki, K.; Nabeshima, Y. Field Study on Nationality Differences in Thermal Comfort of University Students in Dormitories during Winter in Japan. Buildings 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Budiawan, W.; Tsuzuki, K. Thermal Comfort and Sleep Quality of Indonesian Students Living in Japan during Summer and Winter. Buildings 2021, 11, 326. [Google Scholar] [CrossRef]
- Rijal, H.B.; Yoshida, K.; Humphreys, M.A.; Nicol, J.F. Development of an adaptive thermal comfort model for energy-saving building design in Japan. Archit. Sci. Rev. 2021, 64, 109–122. [Google Scholar] [CrossRef]
- Ministry of The Environment of Japan Energy Saving Actions in Office. Available online: https://ondankataisaku.env.go.jp/coolchoice/setsuden/office/saving01.html (accessed on 7 October 2021).
- Kutas, M.; McCarthy, G.; Donchin, E. Augmenting Mental Chronometry: The P300 as a Measure of Stimulus Evaluation Time Science is currently published by American Association for the Advancement of Science. JSTOR’s Terms and Conditions of Use provide. Science (80-) 1977, 197, 792–795. Available online: http://www.jstor.org/about/terms.html (accessed on 23 September 2021). [CrossRef]
- Yang, L.; Gao, S.; Zhao, S.; Zhang, H.; Arens, E.; Zhai, Y. Thermal comfort and physiological responses with standing and treadmill workstations in summer. Build. Environ. 2020, 185, 107238. [Google Scholar] [CrossRef]
- Bell, P.A. Effects of Noise and Heat Stress on Primary and Subsidiary Task Performance. Hum. Factors J. Hum. Factors Ergon. Soc. 1978, 20, 749–752. [Google Scholar] [CrossRef]
- Bell, P.A.; Loomis, R.J.; Cervone, J.C. Effects of heat, social facilitation, sex differences, and task difficulty on reaction time. Hum. Factors 1982, 24, 19–24. [Google Scholar] [CrossRef]
- Kosmidis, M.H.; Duncan, C.C.; Mirsky, A.F. Sex differences in seasonal variations in P300. Biol. Psychol. 1998, 49, 249–268. [Google Scholar] [CrossRef]
- Trezza, B.M.; Apolinario, D.; de Oliveira, R.S.; Busse, A.L.; Gonçalves, F.L.T.; Saldiva, P.H.N.; Jacob-Filho, W. Environmental heat exposure and cognitive performance in older adults: A controlled trial. Age 2015, 37, 9783. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.H.; Yoon, J.; Jung, K.Y. Influence of task difficulty on the features of event-related potential during visual oddball task. Neurosci. Lett. 2008, 445, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Jung, K.Y.; Kim, C.H.; Kim, K.H. Changes in gamma- and theta-band phase synchronization patterns due to the difficulty of auditory oddball task. Neurosci. Lett. 2010, 468, 156–160. [Google Scholar] [CrossRef]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials 1987, 68, 311–320. [Google Scholar] [CrossRef]
- Li, Y.; Vgontzas, A.; Kritikou, I.; Fernandez-Mendoza, J.; Basta, M.; Pejovic, S.; Gaines, J.; Bixler, E.O. Psychomotor vigilance test and its association with daytime sleepiness and inflammation in sleep apnea: Clinical implications. J. Clin. Sleep Med. 2017, 13, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Teichner, W.H.; Kobrick, J.L. Effects of Prolonged Exposure To Low Temperature on Visual-Motor Performance. J. Exp. Psychol. 1955, 49, 122–126. [Google Scholar] [CrossRef]
- Hancock, P.A. Sustained Attention Under Thermal Stress. Psychol. Bull. 1986, 99, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Enander, A.E.; Hygge, S. Thermal stress and human performance. Scand. J. Work Environ. Health 1990, 16, 44–50. Available online: http://www.jstor.org/stable/40965843 (accessed on 23 September 2021).
- Romeijn, N.; Raymann, R.J.E.M.; Møst, E.; Te Lindert, B.; Van Der Meijden, W.P.; Fronczek, R.; Gomez-Herrero, G.; Van Someren, E.J.W. Sleep, vigilance, and thermosensitivity. Pflugers Arch. Eur. J. Physiol. 2012, 463, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Kulve, M.T.; Schlangen, L.J.M.; Schellen, L.; Frijns, A.J.H.; van Marken Lichtenbelt, W.D. The impact of morning light intensity and environmental temperature on body temperatures and alertness. Physiol. Behav. 2017, 175, 72–81. [Google Scholar] [CrossRef]
- Katsuura, T.; Tachibana, M.E.; Lee, C.; Okada, A.; Kikuchi, Y. Comparative studies on thermoregulatory responses to heat between Japanese Brazilians and Japanese. Physiol. Anthropol. 1992, 11, 105–111. [Google Scholar] [CrossRef]
- Takeshi, K.; Yoshiaki, N.; Arihiro, H.; Masahiro, S.; Masaki, F.; Takashi, T. Effects of 24-Hours Sleep Deprivation Using on Central Processing Event-Related Potentials. Jpn. J. Phys. Fit. Sports Med. 1999, 48, 477–487. [Google Scholar]
- Aseem, A.; Hussain, M.E. Sleep quality and its effect on event related potential P300 in adolescents with and without sleep disturbances. Int. J. Adolesc. Med. Health 2019. [Google Scholar] [CrossRef]
- Devoto, A.; Manganelli, S.; Lucidi, F.; Lombardo, C.; Russo, P.M.; Violani, C. Quality of sleep and P300 amplitude in primary insomnia: A preliminary study. Sleep 2005, 28, 859–863. [Google Scholar] [CrossRef] [Green Version]
- Cusick, C.N.; Isaacson, P.A.; Langberg, J.M.; Becker, S.P. Last Night’s Sleep in Relation to Academic Achievement and Neurocognitive Testing Performance in Adolescents with and without ADHD. Sleep Med. 2018, 75–79. [Google Scholar] [CrossRef]
- Charest, J.; Grandner, M.A. Sleep and Athletic Performance: Impacts on Physical Performance, Mental Performance, Injury Risk and Recovery, and Mental Health. Sleep Med. Clin. 2020, 15, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Mizuno, K.; Tsuzuki, K. Effects of season on sleep and skin temperature in the elderly. Int. J. Biometeorol. 2010, 54, 401–409. [Google Scholar] [CrossRef]
- Tsuzuki, K.; Mori, I.; Sakoi, T.; Kurokawa, Y. Effects of seasonal illumination and thermal environments on sleep in elderly men. Build. Environ. 2015, 88, 82–88. [Google Scholar] [CrossRef]
- Dinges, D.F.; Rogers, N. Baynard Chronic sleep deprivation. In Principles and Practice of Sleep Medicine; Kryger, M., Roth, T., Dement, W., Eds.; Elsevier/Saunders: Philadelphia, PA, USA, 2005; pp. 67–76. [Google Scholar]
Season | Cond. | AC | Mode | T (°C) | MR (met) | Clo (clo) |
---|---|---|---|---|---|---|
Summer | Hot | - | - | - | 1 | 0.27 |
Cooling | AC | Cooling | 20–26 | 1 | 0.27 | |
Winter | Cold | - | - | - | 1 | 0.99 |
Heating | AC | Heating | 20–26 | 1 | 0.99 |
Parameter | Instrument Name | Instrument Model | Company | Accuracy |
---|---|---|---|---|
Air temperature and relative humidity | Illuminance UV Recorder | TR-74Ui (logger), and THA-3151 (sensor) | T&D Corp. | 0–55 °C (±0.5 °C) ±5% |
Wall temperature | Thermocouple cable | T-type thermocouple cable | Graphtec Corp. | |
Radiant temperature | Globe thermometer | Sibata 080340-150 | Sibata | |
Air velocity | Air Flow Transducer | 6332D (Sensor) | Kanomax Inc. | ±3% |
Logger | Mini logger GL800 | Graphtec Corp. | ||
Body mass | Weight scale | GP 100K | A & D Corp. | ±1 g |
Skin temperature | Skin temperature logger | LT-8 Series (skin temperature logger) | Gram Corp. | ±0.1 °C |
409 J (thermistor probe) | Nikkiso-YSI Corp. | |||
Reaction time | Psychomotor Vigilance Task | PVT-192 | Ambulatory Monitoring Inc. | ±1 ms |
P300 of ERP | Electroencephalogram (EEG) | Intercross 415 (micro data acquisition), and Intercross 511 (stimulus generator) | Intercross Corp. | / |
Scale | Thermal Sensation | Thermal Comfort |
---|---|---|
4 | Very hot | |
3 | Hot | Very comfortable |
2 | Warm | Comfortable |
1 | Slightly warm | Slightly comfortable |
0 | Neutral | Neutral |
−1 | Slightly cool | Slightly uncomfortable |
−2 | Cool | Uncomfortable |
−3 | Cold | Very uncomfortable |
−4 | Very cold |
Cond. | Ta (°C) | RH (%) | MRT (°C) | AV (m/s) | MST (°C) |
---|---|---|---|---|---|
Hot | 31.0 (1.6) | 64 (12) | 31.4 (1.8) | 0.02 (0.01) | 34.3 (0.7) |
Cooling | 24.5 (1.8) † | 49 (10) † | 25.4 (2.2) † | 0.17 (0.26) † | 32.9 (0.8) † |
Heating | 21.9 (1.3) | 37 (10) | 22.3 (1.2) | 0.15 (0.02) | 32.2 (0.8) |
Cold | 13.9 (2.3) ‡ | 53 (12) ‡ | 14.5 (2.0) ‡ | 0.04 (0.01) ‡ | 29.5 (1.6) ‡ |
α | IDN (°C) | JPN (°C) | Sig. |
---|---|---|---|
0.33 | 24.7 | 24.4 | p = 0.72 |
0.44 | 24.5 | 24.3 | p = 0.88 |
0.67 | 24.2 | 24.3 | p = 0.92 |
avg. | 24.5 | 24.3 | p = 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiawan, W.; Sakakibara, H.; Tsuzuki, K. Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment. Energies 2021, 14, 7598. https://doi.org/10.3390/en14227598
Budiawan W, Sakakibara H, Tsuzuki K. Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment. Energies. 2021; 14(22):7598. https://doi.org/10.3390/en14227598
Chicago/Turabian StyleBudiawan, Wiwik, Hirotake Sakakibara, and Kazuyo Tsuzuki. 2021. "Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment" Energies 14, no. 22: 7598. https://doi.org/10.3390/en14227598
APA StyleBudiawan, W., Sakakibara, H., & Tsuzuki, K. (2021). Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment. Energies, 14(22), 7598. https://doi.org/10.3390/en14227598