Assessment of Biochar Produced by Flame-Curtain Pyrolysis as a Precursor for the Development of an Efficient Electric Double-Layer Capacitor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biochar Production
3.2. KOH Activation
3.3. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, Z.; Mosa, A.; Zhan, L.; Gao, B. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review. Chemosphere 2021, 278, 130378. [Google Scholar] [CrossRef]
- Waqas, M.; Asam, Z.; Rehan, M.; Anwar, M.N.; Khattak, R.A.; Ismail, I.M.I.; Tabatabaei, M.; Nizami, A.S. Development of biomass-derived biochar for agronomic and environmental remediation applications. Biomass Convers. Biorefin. 2021, 11, 339–361. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci. Total Environ. 2021, 756, 143816. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Niu, Q.; Zeng, G.; Lai, C.; Liu, S.; Huang, D.; Qin, L.; Liu, X.; Li, B.; et al. New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes. Chem. Eng. J. 2021, 416, 129027. [Google Scholar] [CrossRef]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and char quality of flame-curtain “Kon Tiki” kilns for farmer-scale charcoal/biochar production. PLoS ONE 2016, 11, e54856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Biochar Certificate (EBC). Guidelines for a Sustainable Production of Biochar; European Biochar Foundation: Arbaz, Switzerland, 2016; pp. 1–22. [Google Scholar]
- Kalderis, D.; Tsuchiya, S.; Phillipou, K.; Paschalidou, P.; Pashalidis, I.; Tashima, D.; Tsubota, T. Utilization of pine tree biochar produced by flame-curtain pyrolysis in two non-agricultural applications. Bioresour. Technol. Rep. 2020, 9, 100384. [Google Scholar] [CrossRef]
- Owsianiak, M.; Cornelissen, G.; Hale, S.E.; Lindhjem, H.; Sparrevik, M. Influence of spatial differentiation in impact assessment for LCA-based decision support: Implementation of biochar technology in Indonesia. J. Clean. Prod. 2018, 200, 259–268. [Google Scholar] [CrossRef]
- Garakani, M.A.; Bellani, S.; Pellegrini, V.; Oropesa-Nuñez, R.; Castillo, A.E.D.R.; Abouali, S.; Najafi, L.; Martín-García, B.; Ansaldo, B.A.; Bondavalli, P.; et al. Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Mater. 2021, 34, 1–11. [Google Scholar] [CrossRef]
- Yue, Z.; Dunya, H.; Ashuri, M.; Kucuk, K.; Aryal, S.; Antonov, S.; Alabbad, B.; Segre, C.U.; Mandal, B.K. Synthesis of a very high specific surface area active carbon and its electrical double-layer capacitor properties in organic electrolytes. ChemEngineering 2020, 4, 43. [Google Scholar] [CrossRef]
- Daraghmeh, A.; Hussain, S.; Haq, A.U.; Saadeddin, I.; Servera, L.; Ruiz, J.M. Carbon nanocomposite electrodes for electrical double layer capacitor. J. Energy Storage 2020, 32, 101798. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, M.; Kumar, A.; Tseng, T.Y.; Sharma, Y. Facile and One-Step in Situ Synthesis of Pure Phase Mesoporous Li2MnSiO4/CNTs Nanocomposite for Hybrid Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 2450–2464. [Google Scholar] [CrossRef]
- Zhang, M. A Novel Energy Band Match Method and a Highly Efficient CuO–Co3O4@SiO2 Catalyst for Dimethyl Carbonate Synthesis from CO2. Sci. Adv. Mater. 2021, 13, 115–122. [Google Scholar] [CrossRef]
- Zhang, M. Diethyl carbonate synthesis from CO2 with dehydrating agent of ethylene over catalysts of supported and mixed Ni–Cu@Na3PW12O40. Chem. Pap. 2020, 74, 4493–4505. [Google Scholar] [CrossRef]
- Zhang, M. Synthesis of Co1.5PW12O40 and its catalytic performance of completely converting methanol to ethylene. Chem. Commun. 2016, 52, 1151–1153. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Paraskeva, P.; Kalderis, D.; Diamadopoulos, E. Production of activated carbon from agricultural by-products. J. Chem. Technol. Biotechnol. 2008, 83, 581–592. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Bai, J.; Xu, M.; Luo, C.; Yang, L.; Bai, L.; Wei, D.; Wang, W.; Yang, H. N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors. J. Alloys Compd. 2021, 854, 157207. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Le, P.A.; Phung, V.B.T. Biomass-derived activated carbon electrode coupled with a redox additive electrolyte for electrical double-layer capacitors. J. Nanopart. Res. 2020, 22, 371. [Google Scholar] [CrossRef]
- Sinha, P.; Yadav, A.; Tyagi, A.; Paik, P.; Yokoi, H.; Naskar, A.K.; Kuila, T.; Kar, K.K. Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. Carbon 2020, 168, 419–438. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhu, G.; Shi, J.; Lu, T.; Pan, L. Biomass-Based N, P, and S Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12052–12060. [Google Scholar] [CrossRef]
- Li, T.; Ma, R.; Lin, J.; Hu, Y.; Zhang, P.; Sun, S.; Fang, L. The synthesis and performance analysis of various biomass-based carbon materials for electric double-layer capacitors: A review. Int. J. Energy Res. 2020, 44, 2426–2454. [Google Scholar] [CrossRef]
- Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, X.; Wei, J.; Gao, S. Functional Groups and Pore Size Distribution Do Matter to Hierarchically Porous Carbons as High-Rate-Performance Supercapacitors. Chem. Mater. 2016, 28, 445–458. [Google Scholar] [CrossRef]
- Villarroel-Rocha, J.; Barrera, D.; Blanco, A.; Jalil, M.; Sapag, K. Importance of the αs-plot method in the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2013, 31, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Gómez, N.; Rosas, J.G.; Cara, J.; Martínez, O.; Alburquerque, J.A.; Sánchez, M.E. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J. Clean. Prod. 2016, 120, 181–190. [Google Scholar] [CrossRef]
- Park, J.H.; Wang, J.J.; Kim, S.H.; Kang, S.W.; Jeong, C.Y.; Jeon, J.R.; Park, K.H.; Cho, J.S.; Delaune, R.D.; Seo, D.C. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. J. Colloid Interface Sci. 2019, 553, 298–307. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, B.; Yan, M.; Liu, Z.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Pan, Y.; Huang, J.; et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review. Chem. Eng. J. 2021, 416, 128829. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Laird, D.A. Estimating the organic oxygen content of biochar. Sci. Rep. 2020, 10, 13082. [Google Scholar] [CrossRef]
- Tsubota, T.; Hohshi, Y.; Ohno, T.; Kumagai, S. KOH activation of solid residue of Japanese citron after extraction by microwave process and property as EDLC electrode. J. Porous Mater. 2020, 27, 727–734. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 2005, 283, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Khezami, L.; Ould-Dris, A.; Capart, R. Activated carbon from thermo-compressed wood and other lignocellulosic precursors. BioResources 2007, 2, 193–209. [Google Scholar] [CrossRef]
- Mistar, E.M.; Alfatah, T.; Supardan, M.D. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. J. Mater. Res. Technol. 2020, 9, 6278–6286. [Google Scholar] [CrossRef]
- Raymundo-Piñero, E.; Azaïs, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon 2005, 43, 786–795. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances; VCH: Weinheim, Germany, 1989. [Google Scholar]
- Dehkhoda, A.M.; Gyenge, E.; Ellis, N. A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage. Biomass Bioenergy 2016, 87, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Srinivasan, P.; Sarmah, A.K.; Smernik, R.; Das, O.; Farid, M.; Gao, W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, charac-terization and potential applications. Sci. Total Environ. 2015, 512–513, 495–505. [Google Scholar] [CrossRef]
- Kim, H.S.; Nishiyama, Y.; Ideta, K.; Miyawaki, J.; Matsushita, Y.; Park, J.I.; Mochida, I.; Yoon, S.H. Analysis of water in Loy Yang brown coal using solid-state 1H NMR. J. Ind. Eng. Chem. 2013, 19, 1673–1679. [Google Scholar] [CrossRef]
- McBeath, A.V.; Smernik, R.J.; Krull, E.S.; Lehmann, J. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study. Biomass Bioenergy 2014, 60, 121–129. [Google Scholar] [CrossRef]
- Hor, A.A.; Hashmi, S.A. Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochim. Acta 2020, 356, 136826. [Google Scholar] [CrossRef]
- Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bu, Y.; Jin, H.; Wang, J.; Zhang, W.; Wang, S.; Wang, J. The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuels 2013, 27, 6304–6310. [Google Scholar] [CrossRef]
- Barranco, V.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Oya, A.; Pico, F.; Ibañfez, J.; Agullo-Rueda, F.; Amarilla, J.M.; Rojo, J.M. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J. Phys. Chem. C 2010, 114, 10302–10307. [Google Scholar] [CrossRef]
- Endo, M.; Maeda, T.; Takeda, T.; Kim, Y.J.; Koshiba, K.; Hara, H.; Dresselhaus, M.S. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes. J. Electrochem. Soc. 2001, 148, A910. [Google Scholar] [CrossRef]
- Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 1996, 41, 1633–1639. [Google Scholar] [CrossRef]
- Tsubota, T.; Nagata, D.; Murakami, N.; Ohno, T. Spherical activated carbon derived from spherical cellulose and its performance as EDLC electrode. J. Appl. Polym. Sci. 2014, 131, 1–7. [Google Scholar] [CrossRef]
- You, X.; Misra, M.; Gregori, S.; Mohanty, A.K. Preparation of an Electric Double Layer Capacitor (EDLC) Using Miscanthus-Derived Biocarbon. ACS Sustain. Chem. Eng. 2018, 6, 318–324. [Google Scholar] [CrossRef]
- Oh, T.; Kim, M.; Choi, J.; Kim, J. Design of graphitic carbon nitride nanowires with captured mesoporous carbon spheres for EDLC electrode materials. Ionics 2018, 24, 3957–3965. [Google Scholar] [CrossRef]
- Fujishige, M.; Yoshida, I.; Toya, Y.; Banba, Y.; Oshida, K.-I.; Tanaka, Y.-S.; Dulyaseree, P.; Wongwiriyapan, W.; Takeuchi, K. Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material. J. Environ. Chem. Eng. 2017, 5, 1801–1808. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D.; Shen, Z.; Bao, B.; Zhao, S.; Wu, L. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials. Electrochim. Acta 2015, 180, 241–251. [Google Scholar] [CrossRef]
- Takeuchi, K.; Fujishige, M.; Ishida, N.; Kunieda, Y.; Kato, Y.; Tanaka, Y.; Ochi, T.; Shirotori, H.; Uzuhashi, Y.; Ito, S.; et al. High porous bio-nanocarbons prepared by carbonization and NaOH activation of polysaccharides for electrode material of EDLC. J. Phys. Chem. Solids 2018, 118, 137–143. [Google Scholar] [CrossRef]
- Köse, K.Ö.; Pişkin, B.; Aydınol, M.K. Chemical and structural optimization of ZnCl2 activated carbons via high temperature CO2 treatment for EDLC applications. Int. J. Hydrog. Energy 2018, 43, 18607–18616. [Google Scholar] [CrossRef]
- Gao, Q.; Titirici, M.M. Achieving high volumetric EDLC carbons via hydrothermal carbonization and cyclic activation. J. Phys. Energy 2020, 2, 025005. [Google Scholar] [CrossRef]
- Chang, P.; Yang, F.; Xie, Q.; Li, T.; Dong, J. 2D porous carbon nanosheet from sulfonated pitch-based graphene quantum dots for high volumetric performance EDLCs. J. Power Sources 2020, 479, 228825. [Google Scholar] [CrossRef]
Sample | No. 1 | No. 2 | No. 3 | Average |
---|---|---|---|---|
C/wt.% | 77.92 | 77.93 | 78.05 | 77.97 |
H/wt.% | 2.68 | 2.6 | 2.54 | 2.61 |
N/wt.% | 0.89 | 0.72 | 0.83 | 0.81 |
residue/wt.% | 5.99 | 5.74 | 5.64 | 5.79 |
others/wt.% | 12.52 | 13.01 | 12.94 | 12.82 |
No. 4 | No. 5 | Average | |
---|---|---|---|
C/wt.% | 84.64 | 84.26 | 84.45 |
O/wt.% | 12.23 | 12.18 | 12.21 |
Ca/wt.% | 1.46 | 1.93 | 1.70 |
Na/wt.% | 1.67 | 1.63 | 1.65 |
Concentration/wt.% | |
---|---|
Ca | 74.51 |
Mg | 6.71 |
K | 4.87 |
Na | 4.11 |
Si | 2.75 |
Fe | 1.94 |
P | 1.85 |
Cl | 1.70 |
S | 1.56 |
Sample | C /wt.% | H /wt.% | N /wt.% | Residue /wt.% | Others /wt.% |
---|---|---|---|---|---|
raw biochar | 77.97 | 2.61 | 0.81 | 5.79 | 12.82 |
0 wt.% | 83.65 | 1.15 | 0.73 | 7.17 | 8.03 |
50 wt.% | 77.00 | 1.1 | 0.75 | 6.57 | 15.33 |
66.7 wt.% | 68.70 | 1.41 | 0.41 | 7.27 | 22.21 |
75 wt.% | 77.56 | 1.16 | 0.59 | 5.41 | 15.87 |
80 wt.% | 72.14 | 1.23 | 0.32 | 5.97 | 20.34 |
85.7 wt.% | 81.11 | 0.89 | 0.19 | 7.58 | 10.42 |
Material Name | Feedstock | Preparation Conditions | Electrolyte | Surface Area | Capacitance (F g−1) | Scan Rate (mV s−1) | Number of Electrodes in Cell | Reference |
---|---|---|---|---|---|---|---|---|
KOH-activated miscanthus biochar | Miscanthus plant | Pyrolysis (700 °C), KOH activation (900 °C—1 h) | 1 M Et4NBF4 | 3024 | 116.9 | 10 | nr | [53] |
Carbon nitride | Melamine (for carbon nitride) | Annealing (450 °C—4 h), heating (550 °C—2 h) | 6 Μ ΚOH | nr a | 131.6 | 5 | 3 | [54] |
Mesoporous carbon spheres | Sodium carboxymethyl cellulose | Carbonization (800 °C—4 h) | 6 M KOH | 320 | 231.4 | 5 | 3 | [54] |
AC-0600 | Bamboo cellulose fiber | Carbonization (600 °C), NaOH activation (720 °C) | 1 M Et4NBF4 in propylene carbonate | 2366 | 43 | From charge–discharge | nr | [55] |
NBKBC | Bamboo powder | Pyrolysis (750 °C for 1 h) Impregnation with KOH Second pyrolysis (750 °C for 1 h) Doping with N and B | 1 M KOH | 171.5 | 281 | From charge–discharge | 3 | [56] |
NBKBC | Bamboo powder | Pyrolysis (750 °C for 1 h) Impregnation with KOH Second pyrolysis (750 °C for 1 h) Doping with N and B | 1 M H2SO4 | 171.5 | 318 | From charge–discharge | 3 | [56] |
SW-2.5 N | Polysaccharides | Pyrolysis (600 °C—1 h) Impregnation, NaOH activation (720 °C—1 h) | Et4NBF4/propylene carbonate | 2294.3 | 46.1 | From charge–discharge | 2 | [57] |
IR1-C36 (tea) | Pine cone | ZnCl2 activation (500 °C—2 h) Second activation (800 °C—36 h) | 1 M TEABF4/acetonitrile | 2007 | 87.1 | 10 | 2 | [58] |
CDHC-220 | Microcrystalline cellulose | Hydrothermal carbonization (220 °C—4 h) Pyrolysis (1050 °C—3 h), H2O2 oxidation (200 °C—8 h) | 1 M TEABF4/acetonitrile | 964 | 73 | 5 | 2 | [59] |
PCN1-800 | Sulfonated pitch | KOH activation (800 °C—1 h) Annealing (800 °C) | Pure EMIMBF4 | 2429 | 160.4 | 20 | 2 | [60] |
Activated biochar | Pine tree residues | Flame-curtain pyrolysis (600 °C—1 h), KOH activation (800 °C—1 h) | 1 M H2SO4 | 3014 | 200.6 | 1 | 3 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubota, T.; Tsuchiya, S.; Kusumoto, T.; Kalderis, D. Assessment of Biochar Produced by Flame-Curtain Pyrolysis as a Precursor for the Development of an Efficient Electric Double-Layer Capacitor. Energies 2021, 14, 7671. https://doi.org/10.3390/en14227671
Tsubota T, Tsuchiya S, Kusumoto T, Kalderis D. Assessment of Biochar Produced by Flame-Curtain Pyrolysis as a Precursor for the Development of an Efficient Electric Double-Layer Capacitor. Energies. 2021; 14(22):7671. https://doi.org/10.3390/en14227671
Chicago/Turabian StyleTsubota, Toshiki, Shion Tsuchiya, Tatsuya Kusumoto, and Dimitrios Kalderis. 2021. "Assessment of Biochar Produced by Flame-Curtain Pyrolysis as a Precursor for the Development of an Efficient Electric Double-Layer Capacitor" Energies 14, no. 22: 7671. https://doi.org/10.3390/en14227671
APA StyleTsubota, T., Tsuchiya, S., Kusumoto, T., & Kalderis, D. (2021). Assessment of Biochar Produced by Flame-Curtain Pyrolysis as a Precursor for the Development of an Efficient Electric Double-Layer Capacitor. Energies, 14(22), 7671. https://doi.org/10.3390/en14227671