Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus
Abstract
:1. Introduction
2. Viral Load Properties
3. Principles of Operation
4. Theoretical Foundations
4.1. Electrostatic Field
4.2. Airflow (Laminar Flow)
4.3. Aerosol Tracing
5. Numerical Setup
- (1)
- Stationary electrostatics simulation using an electrostatics module and PDE (partial differential equation) interface;
- (2)
- Stationary airflow simulation using laminar flow module;
- (3)
- Time-dependent aerosols motion using particle tracing for fluid flow module.
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ha, Q.P.; Metia, S.; Phung, M.D. Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring. IEEE Sens. J. 2020, 20, 4430–4441. [Google Scholar] [CrossRef] [Green Version]
- Jaimini, U.; Banerjee, T.; Romine, W.; Thirunarayan, K.; Sheth, A.; Kalra, M. Investigation of an Indoor Air Quality Sensor for Asthma Management in Children. IEEE Sens. Lett. 2017, 1, 6000204. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Coronavirus Disease (COVID-19) Outbreak: Rights, Roles and Responsibilities of Health Workers, Including Key Considerations for Occupational Safety and Health: Interim Guidance; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. WHO Considers ‘Airborne Precautions’ for Medical Staff after Study Shows Coronavirus Can Survive in Air. 23 March 2020. Available online: https://www.cnbc.com/2020/03/16/who-considers-airborne-precautions-for-medical-staff-after-study-shows-coronavirus-can-survive-in-air.html (accessed on 15 February 2020).
- World Health Organization (WHO). Infection Prevention and Control of Epidemic-and Pandemic-Prone Acute Respiratory Infections in Health Care; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization (WHO). Infection Prevention and Control (IPC) for Novel Coronavirus (COVID-19) Course. Available online: https://openwho.org/courses/COVID-19-IPC-EN (accessed on 25 December 2020).
- Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.S.; Liu, L.; Zhang, Z. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis. 2020, 26, 132. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.; Lau, E.H.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef]
- Prather, K.A.; Wang, C.C.; Schooley, R.T. Reducing transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci. Technol. 2020, 54, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Megahed, N.A.; Ghoneim, E.M. Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ. Res. 2020, 193, 110471. [Google Scholar] [CrossRef] [PubMed]
- Benamar, B.; Favre, E.; Donnot, A.; Rigo, M. Finite element solution for ionized fields in DC electrostatic precipitator. In Proceedings of the COMSOL Users Conference, Grenoble, France, 23–24 October 2007. [Google Scholar]
- Shimizu, K.; Kurokawa, Y.; Blajan, M. Basic study of indoor air quality improvement by atmospheric plasma. IEEE Trans. Ind. Appl. 2015, 52, 1823–1830. [Google Scholar] [CrossRef]
- Christopherson, D.A.; Yao, W.C.; Lu, M.; Vijayakumar, R.; Sedaghat, A.R. High-Efficiency Particulate Air Filters in the Era of COVID-19: Function and Efficacy. Otolaryngol. Neck Surg. 2020, 163, 1153–1155. [Google Scholar] [CrossRef]
- Leder, K.; Newman, D. Respiratory infections during air travel. Intern. Med. J. 2005, 35, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Preventation. SARS-CoV-2 and Potential Airborne Transmission. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html (accessed on 1 November 2021).
- Zhu, S.; Kato, S.; Yang, J.-H. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Build. Environ. 2006, 41, 1691–1702. [Google Scholar] [CrossRef]
- Liu, L.; Wei, J.; Li, Y.; Ooi, A. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 2017, 27, 179–190. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Zhou, Y.; Ji, S. Experimental and numerical study on the transport of droplet aerosols generated by occupants in a fever clinic. Build. Environ. 2021, 187, 107402. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, N.; Wei, J.; Yen, H.-L.; Li, Y. Short-range airborne route dominates exposure of respiratory infection during close contact. Build. Environ. 2020, 176, 106859. [Google Scholar] [CrossRef]
- Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [Google Scholar] [CrossRef]
- Lelieveld, J.; Helleis, F.; Borrmann, S.; Cheng, Y.; Drewnick, F.; Haug, G.; Klimach, T.; Sciare, J.; Su, H.; Pöschl, U. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. Int. J. Environ. Res. Public Health 2020, 17, 8114. [Google Scholar] [CrossRef]
- Löhner, R.; Antil, H.; Idelsohn, S.; Oñate, E. Detailed simulation of viral propagation in the built environment. Comput. Mech. 2020, 66, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Eames, I.; Li, Y.; Taha, Y.A.; Wilson, P.; Bellingan, G.; Ward, K.N.; Breuer, J. Door-opening motion can potentially lead to a transient breakdown in negative-pressure isolation conditions: The importance of vorticity and buoyancy airflows. J. Hosp. Infect. 2005, 61, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Interior Health Authority. IH0200: Airborne Precautions. 2020. Available online: https://www.interiorhealth.ca/ (accessed on 1 November 2021).
- United States Environmental Protection Agency. Air Cleaners, HVAC filters, and Coronavirus (COVID-19). 3 April 2019. Available online: https://www.epa.gov/coronavirus/air-cleaners-hvac-filters-and-coronavirus-covid-19 (accessed on 29 December 2020).
- Elias, B.; Bar-Yam, Y. Could Air Filtration Reduce COVID-19 Severity and Spread? Available online: https://necsi.edu/could-air-filtration-reduce-covid19-severity-and-spread (accessed on 29 December 2020).
- Zhao, B.; Liu, Y.; Chen, C. Air purifiers: A supplementary measure to remove airborne SARS-CoV-2. Build. Environ. 2020, 177, 106918. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gonze, E.; Ondarts, M.; Outin, J.; Gonthier, Y. Electrostatic precipitator for fine and ultrafine particle removal from indoor air environments. Sep. Purif. Technol. 2020, 247, 116964. [Google Scholar] [CrossRef]
- Feng, Z.; Long, Z.; Yu, T. Filtration characteristics of fibrous filter following an electrostatic precipitator. J. Electrost. 2016, 83, 52–62. [Google Scholar] [CrossRef]
- Tien, C.Y.; Chen, J.P.; Li, S.; Li, Z.; Zheng, Y.M.; Peng, A.S.; Zhou, F.; Tsai, C.J.; Chen, S.C. Experimental and theoretical analysis of loading characteristics of different electret media with various properties toward the design of ideal depth filtration for nanoparticles and fine particles. Sep. Purif. Technol. 2020, 15, 116002. [Google Scholar] [CrossRef]
- Raynor, P.C.; Chae, S.J. The Long-Term Performance of Electrically Charged Filters in a Ventilation System. J. Occup. Environ. Hyg. 2004, 1, 463–471. [Google Scholar] [CrossRef]
- Podlinski, J.; Niewulis, A.; Mizeraczyk, J.; Atten, P. ESP performance for various dust densities. J. Electrost. 2008, 66, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Hackam, R.; Aklyama, H. Air pollution control by electrical discharges. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 654–683. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Zheng, Q.; Shen, X.; Wang, S.; Han, P.; Liu, Z.; Yan, K. Recent progress of dry electrostatic precipitation for PM2. 5 emission control from coal-fired boilers. Int. J. Plasma Environ. Sci. Technol. 2015, 9, 69–85. [Google Scholar]
- Popa, G.N.; Abrudean, C.; Deaconu, S.I.; Popa, I.; Vaida, V. A Case Study of ESP Electrical Characteristics from a Thermal Power Station. In Proceedings of the Annual Meeting of the IEEE Industry Applications Society, IAS 2009, Houston, TX, USA, 4–8 October 2009; pp. 1–6. [Google Scholar]
- Gao, W.; Wang, Y.; Zhang, H.; Guo, B.; Zheng, C.; Guo, J.; Gao, X.; Yu, A. A Numerical Investigation of the Effect of Dust Layer on Particle Migration in an Electrostatic Precipitator. Aerosol Air Qual. Res. 2020, 20, 166–179. [Google Scholar] [CrossRef]
- Mizuno, A. Electrostatic precipitation. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 615–624. [Google Scholar] [CrossRef]
- Fujishima, H.; Morita, Y.; Okubo, M.; Yamamoto, T. Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 160–167. [Google Scholar] [CrossRef]
- Jaworek, A.K.; Czech, T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. J. Electrost. 2007, 65, 133–155. [Google Scholar] [CrossRef]
- Chang, J.S. Next generation integrated electrostatic gas cleaning systems. J. Electrostat. 2003, 57, 273–291. [Google Scholar] [CrossRef]
- Parker, K.R. Applied Electrostatic Precipitators; Chapman and Hall: London, UK, 1997; pp. 192–229. [Google Scholar]
- Kuffel, J.; Kuffel, E. High Voltage Engineering: Fundamentals; Elsevier: Oxford, UK, 2000; pp. 129–171. [Google Scholar]
- Robinson, M. Electrostatic precipitation. In Air Pollution Control; Strauss, W., Ed.; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- White, K.J. Industrial Electrostatic Precipitation; Addison-Wesley: Reading, MA, USA, 1963. [Google Scholar]
- Rose, H.E.; Wood, A.J. An Introduction to Electrostatic Precipitators, 2nd ed.; Constable: London, UK, 1966. [Google Scholar]
- Ogleshy, S.; Nichols, G.B. Electrostatic Precipitation; Marcel Dekker: New York, NY, USA, 1978. [Google Scholar]
- White, H.J. Electrostatic precipitation of fly ash. J. Air Pollut. Con. Assoc. 1977, 27, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Grass, N.; Hartmann, W.; Klöckner, M. Application of Different Types of High-Voltage Supplies on Industrial Electrostatic Precipitators. IEEE Trans. Ind. Appl. 2004, 40, 1513–1520. [Google Scholar] [CrossRef]
- Jędrusik, M.; Gajewski, J.B.; Świerczok, A.J. Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators. J. Electrost. 2001, 51–52, 245–251. [Google Scholar] [CrossRef]
- Dumitran, L.; Blejan, O.; Notingher, P.; Samuila, A.; Dascalescu, L. Particle Charging in Combined Corona-Electrostatic Fields. IEEE Trans. Ind. Appl. 2008, 44, 1385–1390. [Google Scholar] [CrossRef]
- Popa, G.N.; Diniș, C.M.; Deaconu, S.I. Numerical Modelling in PlateType Electrostatic Precipitator Supplied with Pulse Energization. In Proceedings of the 2011—14th European Conference on Power Electronics and Applications, EPE 2011, Birmingham, UK, 30 August–1 September 2011; pp. 1–8. [Google Scholar]
- Popa, G.N.; Diniș, C.M.; Deaconu, S.I.; Popa, A. Numerical Modeling of Electric Parameters from Industrial Plate-Type Electrostatic Precipitator. In Proceedings of the 2011 IEEE International Conference on Industrial Technology ICIT 2011 IEEE, Auburn, AL, USA, 14–16 March 2011; pp. 21–26. [Google Scholar]
- Lobry, J. A New Numerical Scheme for the Simulation of Corona Fields. IEEE Trans. Magn. 2014, 50, 541–544. [Google Scholar] [CrossRef]
- Butler, A.J.; Cendes, Z.J.; Hoburg, J.F. Interfacing the finite-element method with the method of characteristics in self-consistent electrostatic field models. IEEE Trans. Ind. Appl. 1989, 25, 533–538. [Google Scholar] [CrossRef]
- Riediker, M.; Tsai, D.-H. Estimation of Viral Aerosol Emissions from Simulated Individuals with Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e2013807. [Google Scholar] [CrossRef]
- Asadi, S.; Wexler, A.S.; Cappa, C.; Barreda, S.; Bouvier, N.M.; Ristenpart, W.D. Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS ONE 2020, 15, e0227699. [Google Scholar] [CrossRef] [Green Version]
- Nicas, M.; Nazaroff, W.; Hubbard, A. Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. J. Occup. Environ. Hyg. 2005, 2, 143–154. [Google Scholar] [CrossRef]
- Wells, W.F. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections; Harvard University Press: Cambridge, MA, USA, 1955. [Google Scholar]
- Mittal, R.; Ni, R.; Seo, J.-H. The flow physics of COVID-19. J. Fluid Mech. 2020, 894, F2. [Google Scholar] [CrossRef]
- Atkinson, J.; Chartier, Y.; Pessoa-Silva, C.L.; Jensen, P.; Li, Y.; Seto, W.-H. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Dhand, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 202, 651–659. [Google Scholar] [CrossRef]
- Dolata, M.; Michalski, J. Non-linear effects in spherical particle motion in oscillatory flowing gas. Pol. J. Chem. 1999, 73, 347–357. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Dover: Mineola, NY, USA, 2005. [Google Scholar]
- Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments—Revisiting the Wells evaporation—Falling curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef]
- Wells, W.F. On air-borne infection: Study II: Droplets and droplet nuclei. Am. J. Hyg. 1934, 20, 611–618. [Google Scholar]
- Ai, Z.T.; Melikov, A.K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air. 2018, 28, 500–524. [Google Scholar] [CrossRef]
- Bahl, P.; Doolan, C.; DE Silva, C.; Chughtai, A.A.; Bourouiba, L.; MacIntyre, C.R. Airborne or Droplet Precautions for Health Workers Treating Coronavirus Disease 2019? J. Infect. Dis. 2020, jiaa189. Available online: https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiaa189/5820886 (accessed on 1 November 2021). [CrossRef] [Green Version]
- Blocken, B.; van Druenen, T.; Ricci, A.; Kang, L.; van Hooff, T.; Qin, P.; Xia, L.; Ruiz, C.A.; Arts, J.; Diepens, J.; et al. Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build. Environ. 2021, 193, 107659. [Google Scholar] [CrossRef]
- Zhu, Z.; Momeu, C.; Zakhartsev, M.; Schwaneberg, U. Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens. Bioelectron. 2006, 21, 2046–2051. [Google Scholar] [CrossRef]
- Morawska, L.; Johnson, G.; Ristovski, Z.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, Y.H.C.; Li, Y.; Katoshevski, D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 2009, 40, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Redrow, J.; Ma, L.; Celik, I.; Posada, J.; Feng, Z.-G. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build. Environ. 2011, 46, 2042–2051. [Google Scholar] [CrossRef]
- Vejerano, E.P.; Marr, L.C. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R. Soc. Interface 2018, 15, 20170939. [Google Scholar] [CrossRef] [Green Version]
- Schade, W.; Reimer, V.; Seipenbusch, M.; Willer, U. Experimental Investigation of Aerosol and CO2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall. Int. J. Environ. Res. Public Health 2021, 18, 3037. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Preventation. Transmission-Based Precautions. CDC. Available online: https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html (accessed on 1 November 2021).
- Dbouk, T.; Drikakis, D. On respiratory droplets and face masks. Phys. Fluids 2020, 32, 063303. [Google Scholar] [CrossRef]
- Chen, C.; Ji, W.; Zhao, B. Size-dependent efficiencies of ultrafine particle removal of various filter media. Build. Environ. 2019, 160, 106171. [Google Scholar] [CrossRef]
- Kallio, G.A.; Stock, D.E. Computation of electrical conditions inside wire-duct electrostatic precipitators using a combined finite-element, finite-difference technique. J. Appl. Phys. 1986, 59, 1799–1806. [Google Scholar] [CrossRef]
- Farnoosh, N. Three-Dimensional Modeling of Electrostatic Precipitator Using Hybrid Finite Element-Flux Corrected Transport Technique. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2011. [Google Scholar]
- Peek, F. Determination Phenomena in High Voltage; McGraw-Hill: New York, NY, USA, 1929; pp. 52–80. [Google Scholar]
- Beroual, A.; Fofana, I. Discharge in Long Air Gap—Modeling and Applications; IOP Publishing: Bristol, UK, 2016; Available online: http://iopscience.iop.org/book/978-0-7503-1236-3 (accessed on 1 November 2021).
- Shah, K.P. Construction, Working, Operation and Maintenance of Electrostatic Precipitators (ESPs). 2017. Available online: https://practicalmaintenance.net/wp-content/uploads/Construction-Working-Operation-and-Maintenance-of-Electrostatic-Precipitators-ESPs.pdf (accessed on 1 November 2021).
- Chu, P.K.; Lu, X. Low Temperature Plasma Technology: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Huang, S.-H.; Chen, C.-C. Ultrafine Aerosol Penetration through Electrostatic Precipitators. Environ. Sci. Technol. 2002, 36, 4625–4632. [Google Scholar] [CrossRef]
- Podlinski, J.; Kocik, M.; Barbucha, R.; Niewulis, A.; Mizeraczyk, J.; Mizuno, A. 3D PIV measurements of the EHD flow patterns in a narrow lectrostatic precipitator with wire-plate or wire-flocking electrodes. Czechoslov. J. Phys. 2006, 56, B1009–B1016. [Google Scholar] [CrossRef]
- Oglesby, S., Jr.; Nichols, G.B. Electrostatic precipitation. Air Pollut. 2014, 24, 189–256. [Google Scholar]
- Arrondel, V.; Bacchiega, G.; Hamlil, M. The electrostatic precipitator external parameters at the heart of dust collection efficiency performance: Coal characteristics, combustion quality and SCR chemical process. In Proceedings of the 12th International Conference on Electrostatic Precipitation, Nuremberg, Germany, 12–13 May 2011; pp. 25–32. [Google Scholar]
- Lee, Y.; Sung, J.H.; Han, B.; Kim, Y.J.; Kim, H.J. Particle removal performance of a two stage electrostatic precipitator with carbon based nonmetallic collection plates for oil mist. In Proceedings of the 2020 IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 11–15 October 2020; pp. 1–7. [Google Scholar]
- Kim, Y.J.; Han, B.; Woo, C.G.; Kim, H.J. Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates. IEEE Trans. Ind. Appl. 2016, 53, 466–473. [Google Scholar] [CrossRef]
- Yoo, K.H.; Lee, J.S.; Oh, M.D. Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipitators. Aerosol Sci. Technol. 1997, 27, 308–323. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, M.; Han, B.; Woo, C.G.; Zouaghi, A.; Zouzou, N.; Kim, Y.J. Fine particle removal by a two-stage electrostatic precipitator with multiple ion-injection-type prechargers. J. Aerosol Sci. 2019, 130, 61–75. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Han, B.; Woo, C.G.; Kim, H.-J. Ultrafine Particle Collection Performance of a Two-Stage ESP With a Novel Mixing-Type Charging Stage Using Different Geometries and Electrical Conditions. IEEE Trans. Ind. Appl. 2017, 53, 5859–5866. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Marchewicz, A.; Krupa, A.; Czech, T.; Charchalis, A. Two-stage vs. two-field electrostatic precipitator. J. Electrost. 2017, 90, 106–112. [Google Scholar] [CrossRef]
- Ji, J.-H.; Hwang, J.; Bae, G.-N.; Kim, Y.-G. Particle charging and agglomeration in DC and AC electric fields. J. Electrost. 2004, 61, 57–68. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Z.; Jiang, J.; Zhou, D.; Lu, M.; Fang, M.; Cen, K. Effects of simultaneous acoustic and electric fields on removal of fine particles emitted from coal combustion. Powder Technol. 2015, 281, 12–19. [Google Scholar] [CrossRef]
- Chang, Q.; Zheng, C.; Yang, Z.; Fang, M.; Gao, X.; Luo, Z.; Cen, K. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification. Fuel 2017, 200, 134–145. [Google Scholar] [CrossRef]
- Wang, X.; Chang, J.; Xu, C.; Zhang, J.; Wang, P.; Ma, C. Collection and charging characteristics of particles in an elec-trostatic precipitator with a wet membrane collecting electrode. J. Electrost. 2016, 83, 28–34. [Google Scholar] [CrossRef]
- Rubinetti, D.; Weiss, D.; Egli, W. Corona Discharge—A Fully Coupled Numerical Approach Verified and Validated. Int. J. Multiphysics 2017, 11, 375–386. [Google Scholar]
- Haque, S.M.; Rasul, M.G.; Khan, M.M.K.; Deev, A.V.; Subaschandar, N. A numerical model of an electrostatic precipitator. In Proceedings of the 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, 2–7 December 2007. [Google Scholar]
- Choi, B.; Fletcher, C. Turbulent particle dispersion in an electrostatic precipitator. Appl. Math. Model. 1998, 22, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Munson, B.; Young, D.F.; Okiishi, T.H. Fundamentals of Fluids Mechanics, 4th ed.; John Wiley & Sons: New York, NY, USA, 2002; p. 833. [Google Scholar]
Electric Potential | Charge Density | Airflow | Particle Motion | |
---|---|---|---|---|
Wire electrodes | V = 30 kV | Peek’s law | No slip | Reflect |
Collecting plates | V = 0 kV | ∇ρq = 0 | No slip | Trap |
Inlet | ∇V = 0 | ∇ρq = 0 | u = 1 m/s | U = 1 m/s Enter |
Outlet | ∇V = 0 | ∇ρq = 0 | Mass conservation | Escape |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behjat, V.; Rezaei-Zare, A.; Fofana, I.; Naderian, A. Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus. Energies 2021, 14, 7808. https://doi.org/10.3390/en14227808
Behjat V, Rezaei-Zare A, Fofana I, Naderian A. Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus. Energies. 2021; 14(22):7808. https://doi.org/10.3390/en14227808
Chicago/Turabian StyleBehjat, Vahid, Afshin Rezaei-Zare, Issouf Fofana, and Ali Naderian. 2021. "Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus" Energies 14, no. 22: 7808. https://doi.org/10.3390/en14227808
APA StyleBehjat, V., Rezaei-Zare, A., Fofana, I., & Naderian, A. (2021). Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus. Energies, 14(22), 7808. https://doi.org/10.3390/en14227808