VDS and VGS Depolarization Effect on SiC MOSFET Short-Circuit Withstand Capability Considering Partial Safe Failure-Mode
Abstract
:1. Introduction
2. Short-Circuit Stress Analysis
2.1. Applied Stress and Power Test Bench
2.2. DC Volatage Depolarization Method
2.2.1. Failure Mode Sequences for a Given Device
2.2.2. DC Voltage Depolarization Method under Several Devices
- Different SC initial pulse duration:
- Long SC pulse:
2.3. Gate Voltage Depolarization Method
3. Electrical and Structural Analysis
3.1. Energy Study under Short-Circuit
3.2. RDSON Analysis
4. Thermal 1D Simulation Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baliga, B.J. Silicon Carbide Power Devices; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. [Google Scholar]
- Wang, Z.; Shi, X.; Xue, Y.; Tolbert, L.; Wang, F.; Blalock, B.J. Design and Performance Evaluation of Overcurrent Protection Schemes for Silicon Carbide (SiC) Power MOSFETs. IEEE Trans. Ind. Electron. 2014, 61, 5570–5581. [Google Scholar] [CrossRef]
- Agarwal, A.; Kanale, A.; Han, K.; Baliga, B.J. Switching and Short-Circuit Performance of 27 nm Gate Oxide, 650 V SiC Planar-Gate MOSFETs with 10 to 15 V Gate Drive Voltage. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 17–21 May 2020; pp. 250–253. [Google Scholar] [CrossRef]
- An, J.; Namai, M.; Yano, H.; Iwamuro, N.; Kobayashi, Y.; Harada, S. Methodology for enhanced short-circuit capability of SiC MOSFETs. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 391–394. [Google Scholar] [CrossRef]
- Bolotnikov, A.; Losee, P.A.; Ghandi, R.; Halverson, A.; Stevanovic, L. Optimization of 1700 V SiC MOSFET for Short Circuit Ruggedness. Mater. Sci. Forum 2019, 963, 801–804. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Yue, R. SiC Trench MOSFET With Reduced Switching Loss and Increased Short-Circuit Capability. IEEE Trans. Electron Devices 2020, 67, 3685–3690. [Google Scholar] [CrossRef]
- Okada, M.; Kyogoku, S.; Kumazawa, T.; Saito, J.; Morimoto, T.; Takei, M.; Harada, S. Superior Short-Circuit Performance of SiC Superjunction MOSFET. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 17–21 May 2020; pp. 70–73. [Google Scholar] [CrossRef]
- Boige, F.; Richardeau, F.; Lefebvre, S.; Blaquière, J.-M.; Guibaud, G.; Bourennane, A. Ensure an original and safe “fail-to-open” mode in planar and trench power SiC MOSFET devices in extreme short-circuit operation. Microelectron. Reliab. 2018, 88-90, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Fayyaz, A.; Riccio, M.; Maresca, L.; Breglio, G.; Castellazzi, A.; Irace, A. A Comprehensive Study of Short-Circuit Ruggedness of Silicon Carbide Power MOSFETs. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 978–987. [Google Scholar] [CrossRef]
- Chen, C.; Labrousse, D.; Lefebvre, S.; Petit, M.; Buttay, C.; Morel, H. Study of short-circuit robustness of SiC MOSFETs, analysis of the failure modes and comparison with BJTs. Microelectron. Reliab. 2015, 55, 1708–1713. [Google Scholar] [CrossRef] [Green Version]
- Othman, D.; Lefebvre, S.; Berkani, M.; Khatir, Z.; Ibrahim, A.; Bouzourene, A. Robustness of 1.2 kV SiC MOSFET devices. Microelectron. Reliab. 2013, 53, 1735–1738. [Google Scholar] [CrossRef]
- Richardeau, F.; Boige, F. Circuit-Type modelling of SiC power MOSFET in short-circuit operation including selective fail-to-open and fail-to-short modes competition. In Proceedings of the 30th ESREF, Toulouse, France, 23–26 September 2019. [Google Scholar]
- Li, X.; Deng, X.; Zhu, H.; Wen, Y.; Li, X.; Zhang, Y.; Li, Z.; Zhang, B. Analysis of Short-Circuit Behavior for SiC MOSFETs with Various Circuit Characteristics. In Proceedings of the 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 23–25 November 2020; pp. 54–57. [Google Scholar] [CrossRef]
- Namai, M.; An, J.; Yano, H.; Iwamuro, N. Investigation of short-circuit failure mechanisms of SiC MOSFETs by varying DC bus voltage. Jpn. J. Appl. Phys. 2018, 57, 074102. [Google Scholar] [CrossRef]
- Pulvirenti, M.; Cavallaro, D.; Bentivegna, N.; Cascino, S.; Zanetti, E.; Saggio, M. Thermal Model Development for SiC MOSFETs Robustness Analysis under Repetitive Short Circuit Tests. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–10 September 2020; pp. P.1–P.10. [Google Scholar] [CrossRef]
- Qin, H.; Dong, Y.; Xu, K.; Xu, H.; Fu, D.; Wang, S.; Zhao, C. A comprehensive study of the short-circuit characteristics of SiC MOSFETs. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 332–336. [Google Scholar] [CrossRef]
- Clemente, S. Transient thermal response of power semiconductors to short power pulses. IEEE Trans. Power Electron. 1993, 8, 337–341. [Google Scholar] [CrossRef]
- Boige, F.; Tremouilles, D.; Richardeau, F. Physical Origin of the Gate Current Surge During Short-Circuit Operation of SiC MOSFET. IEEE Electron Device Lett. 2019, 40, 666–669. [Google Scholar] [CrossRef]
- Richardeau, F.; Boige, F.; Lefebvre, S. Gate Leakage-Current, Damaged Gate and Open-Circuit Failure-Mode of Recent SiC Power Mosfet; IEEE: Nottingham, UK, 2018. [Google Scholar]
- Unger, C.; Pfost, M. Investigation of Gate and Drain Leakage Currents During the Short Circuit of SiC-MOSFETs. In Proceedings of the 2020 32nd (ISPSD), Vienna, Austria, 17–21 May 2020; pp. 238–241. [Google Scholar]
- Boige, F.; Richardeau, F.; Trémouilles, D.; Lefebvre, S.; Guibaud, G. Investigation on Damaged Planar-Oxide of 1200 V SiC Power MOSFETs in Non-Destructive Short-Circuit Operation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Liu, J.; Zhang, G.; Wang, B.; Li, W.; Wang, J. Gate Failure Physics of SiC MOSFETs Under Short-Circuit Stress. IEEE Electron Device Lett. 2020, 41, 103–106. [Google Scholar] [CrossRef]
- Boige, F. Caractérisation et Modélisation électrothermique Compacte étendue du MOSFET SiC en Régime Extrême de Fonctionnement Incluant ses Modes de Défaillance: Application à la Conception d’une Protection Intégrée au Plus Proche du Circuit de Commande. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2019. [Google Scholar]
- Cavallaro, D.; Pulvirenti, M.; Zanetti, E.; Saggio, M.G. Capability of SiC MOSFETs under Short-Circuit Tests and Development of a Thermal Model by Finite Element Analysis. MSF 2019, 963, 788–791. [Google Scholar] [CrossRef]
- Reigosa, P.D.; Iannuzzo, F.; Ceccarelli, L. Effect of short-circuit stress on the degradation of the SiO2 dielectric in SiC power MOSFETs. Microelectron. Reliab. 2018, 88–90, 577–583. [Google Scholar] [CrossRef]
- Chen, C.; Nguyen, T.; Labrousse, D.; Lefebvre, S.; Buttay, C.; Morel, H. New definition of critical energy for SiC MOSFET robustness under short circuit operations: The repetitive critical energy. Microelectron. Reliab. 2020, 114, 113839. [Google Scholar] [CrossRef]
- Castellazzi, A.; Richardeau, F.; Borghese, A.; Boige, F.; Fayyaz, A.; Irace, A.; Guibaud, G.; Chazal, V. Gate-damage accumulation and off-line recovery in SiC power MOSFETs with soft short-circuit failure mode. Microelectron. Reliab. 2020, 114, 113943. [Google Scholar] [CrossRef]
- Richardeau, F.; Boige, F.; Castellazzi, A.; Chazal, V.; Fayyaz, A.; Borghese, A.; Irace, A.; Guibaud, G. SiC MOSFETs soft and hard failure modes: Functional analysis and structural characterization. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; pp. 170–173. [Google Scholar] [CrossRef]
- Boige, F.; Richardeau, F.; Lefebvre, S.; Cousineau, M. SiC Power MOSFET in Short-Circuit Operation: Electro-Thermal Macro-Modelling Combining Physical and Numerical Approaches with Circuit-Type Implementation; Matcom: Amsterdam, The Netherlands, 2019; pp. 375–386. [Google Scholar]
DUT | #2 @ 25 °C | #3 @ 25 °C | #4 @ 25 °C | #6 @ 25 °C | #16 @ 125 °C | #19 @ 125 °C |
---|---|---|---|---|---|---|
Test | 1st Test | 1st Test | 2nd Test | 1st Test | 1st Test | 1st Test |
VGS_th [V] | 3.85 | 3.31 | 3.27 | 2.89 | 3.06 | 2.99 |
TPulse_G_L [µs] | 3.5 | 3.5 | 3.5 | 3 | 3.75 | 3.5 |
TPulse_D_L [µs] | 4.25 | 4.25 | 3.75 | 3.75 | 4.75 | 4.25 |
TPulse_G_D [µs] | 4.75 | 5.25 | 5 | 4.75 | 4.75 | 5 |
TPulse_Final [µs] | 8.75 | 7.5 | 17.75 | 6.5 | NA | 5 |
ID_Max [A] | 260 | 285 | 285 | 320 | 245 | 270 |
EFinal [mJ] | NA | 606 | 592 | 581 | NA | 504 |
EFinal·cm−2 [J·cm−2] | NA | 10.1 | 9.87 | 9.68 | NA | 8.40 |
Crack Delay [µs] | 2.4 µs | 5.5 µs | 5 µs | 4 µs | >4.25 µs | 6.25 µs |
Pulses Nb. before Damage | 18 | 20 | 9 | 18 | 18 | 19 |
Failure Type | GD + FTS | GD + FTS | GD + FTS | GD + FTS | GD + FTS | GD followed FTS |
[15] | VDS Depolarization Method | VGS Depolarization Method | ||||
---|---|---|---|---|---|---|
Conditions | VBus = 800 V, RG = 4.7 Ω, VGS = −5 V/+18 V | VBus = 600 V, RG = 47 Ω, VGS = −5 V/+18 V | VBus = 600 V, RG = 47 Ω, VGS = −5 V/+10 V | |||
Time [µs] | T° [C] | Time [µs] | T° [C] | Time [µs] | T° [C] | |
TPulse_G_L | - | - | 3.25 | 917 | N.V (3) | N.V (3) |
TPulse_D_L | - | - | 4.25 | 1082 | 8.8 | 977 |
TPulse_G_D | - | - | 4.9 | 1207 (1),(2) | 9.6 | 1056 (1) |
TPulse_Final | 1.62 | 1320 (1) | 9 | Destroyed | 16 | 1241 (2) |
EG_D [mJ] | - | 540 | - | |||
EFinal [mJ] | - | 600 | - | |||
Failure mode | FTS | GD + FTS | GD + FTO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barazi, Y.; Richardeau, F.; Jouha, W.; Reynes, J.-M. VDS and VGS Depolarization Effect on SiC MOSFET Short-Circuit Withstand Capability Considering Partial Safe Failure-Mode. Energies 2021, 14, 7960. https://doi.org/10.3390/en14237960
Barazi Y, Richardeau F, Jouha W, Reynes J-M. VDS and VGS Depolarization Effect on SiC MOSFET Short-Circuit Withstand Capability Considering Partial Safe Failure-Mode. Energies. 2021; 14(23):7960. https://doi.org/10.3390/en14237960
Chicago/Turabian StyleBarazi, Yazan, Frédéric Richardeau, Wadia Jouha, and Jean-Michel Reynes. 2021. "VDS and VGS Depolarization Effect on SiC MOSFET Short-Circuit Withstand Capability Considering Partial Safe Failure-Mode" Energies 14, no. 23: 7960. https://doi.org/10.3390/en14237960
APA StyleBarazi, Y., Richardeau, F., Jouha, W., & Reynes, J.-M. (2021). VDS and VGS Depolarization Effect on SiC MOSFET Short-Circuit Withstand Capability Considering Partial Safe Failure-Mode. Energies, 14(23), 7960. https://doi.org/10.3390/en14237960