A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems
Abstract
:1. Introduction
2. Overview on Model Predictive Control Algorithms
- a dynamical plant model is required to predict the behaviour of the system in a specific prediction horizon by using a control law;
- initial conditions are needed to define the status of the system and are usually either imposed or obtained by using appropriate sensors;
- the optimal control law, which optimizes a predefined performance index (or cost function) over the prediction horizon, is computed by using appropriate numerical methods
- the optimal control is only applied in the control horizon, the system is hence updated, and the process is re-iterated.
3. Prediction
- Ego-vehicle behaviour (e.g., speed, fuel or energy consumption, emissions and trajectory error)
- Predecessor vehicle behaviour (e.g., speed and lane changing). Such case involves the human driver behaviour modelling
- Traffic conditions (e.g., Traffic Light (TL) and Road Side Unit (RSU))
- Dynamic state system model
- Machine Learning (ML) techniques (e.g., ANN, CNN, RL and DL)
- Stochastic process modelling (e.g., Autoregressive models and Markov Chains)
- Adaptive and robust version or a combination of the previous ones
4. Cost Function in MPC Problems
5. Constraints in MPC Problems
6. Connectivity
7. Tests for Performance Evaluation
8. Towards the Future: Higher Levels of Automation
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- General Motors IntelliBeam Technology. Available online: https://gmauthority.com/blog/gm/general-motors-technology/gm-lighting-technology/general-motors-intellibeam-technology/ (accessed on 5 July 2021).
- Li, J.Y.; Song, M.X. An Approach of Traffic Sign Recognition Algorithm on MATLAB. Appl. Mech. Mater. 2014, 644–650, 3980–3983. [Google Scholar] [CrossRef]
- Magnussen, A.F.; Le, N.; Hu, L.; Wong, A.W.E. A Survey of the Inadequacies in Traffic Sign Recognition Systems for Autonomous Vehicles. IJPE 2020, 16, 1588. [Google Scholar] [CrossRef]
- He, Z.; Xiao, Z.; Yan, Z. Traffic Sign Recognition Based on Convolutional Neural Network Model. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 155–158. [Google Scholar] [CrossRef]
- Zhou, K.; Zhan, Y.; Fu, D. Learning Region-Based Attention Network for Traffic Sign Recognition. Sensors 2021, 21, 686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, J.; Ren, M.; Zheng, Y. Driver Fatigue Detection: A Survey. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 8587–8591. [Google Scholar]
- Sikander, G.; Anwar, S. Driver Fatigue Detection Systems: A Review. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2339–2352. [Google Scholar] [CrossRef]
- Guo, H.; Cao, D.; Chen, H.; Lv, C.; Wang, H.; Yang, S. Vehicle dynamic state estimation: State of the art schemes and perspectives. IEEE/CAA J. Autom. Sin. 2018, 5, 418–431. [Google Scholar] [CrossRef]
- J3016C: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles—SAE International. Available online: https://www.sae.org/standards/content/j3016_202104/ (accessed on 28 June 2021).
- Bellman, R.; Lee, E. History and development of dynamic programming. IEEE Control. Syst. Mag. 1984, 4, 24–28. [Google Scholar] [CrossRef]
- Miretti, F.; Misul, D.; Spessa, E. DynaProg: Deterministic Dynamic Programming solver for finite horizon multi-stage decision problems. SoftwareX 2021, 14, 100690. [Google Scholar] [CrossRef]
- Anselma, P.G.; Belingardi, G. Enhancing Energy Saving Opportunities through Rightsizing of a Battery Electric Vehicle Powertrain for Optimal Cooperative Driving. SAE Int. J. Connect. Autom. Veh. 2020, 3, 71–83. [Google Scholar] [CrossRef]
- Paganelli, G.; Delprat, S.; Guerra, T.M.; Rimaux, J.; Santin, J.J. Equivalent consumption minimization strategy for parallel hybrid powertrains. In Proceedings of the Vehicular Technology Conference IEEE 55th Vehicular Technology Conference VTC Spring 2002, Birmingham, AL, USA, 6–9 May 2002. [Google Scholar] [CrossRef]
- Zhang, F.; Xi, J.; Langari, R. Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications. IEEE Trans. Intell. Transp. Syst. 2016, 18, 416–430. [Google Scholar] [CrossRef]
- Xie, J.; Gao, K.; Zhou, F.; Hu, L.; Zhu, Z.; Du, R. Driving Intention Oriented Real-Time Energy Management Strategy for PHEV in Urban V2X Scenario. In Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Rhodes Island, Greece, 2–6 November 2020; pp. 70–76. [Google Scholar]
- Spano, M.; Anselma, P.G.; Musa, A.; Misul, D.A.; Belingardi, G. Optimal Real-Time Velocity Planner of a Battery Electric Vehicle in V2V Driving. In Proceedings of the 2021 IEEE Transportation Electrification Conference (ITEC 2021), Anaheim, CA, USA, 15–17 June 2021. [Google Scholar]
- Pérez, J.; Milanés, V.; Godoy, J.; Villagrá, J.; Onieva, E. Cooperative controllers for highways based on human experience. Expert Syst. Appl. 2013, 40, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- Komathy, K.; Cloudin, S. Performance Analysis of Fuzzy Co-Operative Adaptive Cruise Controller in Vehicular Ad Hoc Networks. In Proceedings of the IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013), Chennai, India, 12–14 December 2013; pp. 319–325. [Google Scholar]
- Ding, J.; Li, L.; Peng, H.; Zhang, Y. A Rule-Based Cooperative Merging Strategy for Connected and Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3436–3446. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, Y.; Hanzo, L. Enhancing the Fuel-Economy of V2I-Assisted Autonomous Driving: A Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 8329–8342. [Google Scholar] [CrossRef]
- Guo, Q.; Angah, O.; Liu, Z.; Ban, X. Hybrid deep reinforcement learning based eco-driving for low-level connected and automated vehicles along signalized corridors. Transp. Res. Part. C: Emerg. Technol. 2021, 124, 102980. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Xu, C. An Efficient On-Ramp Merging Strategy for Connected and Automated Vehicles in Multi-Lane Traffic. IEEE Trans. Intell. Transp. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Richalet, J.; Rault, A.; Testud, J.; Papon, J. Model predictive heuristic control: Applications to industrial processes. Automatica 1978, 14, 413–428. [Google Scholar] [CrossRef]
- Diangelakis, N.A.; Avraamidou, S.; Pistikopoulos, S. Decentralized Multiparametric Model Predictive Control for Domestic Combined Heat and Power Systems. Ind. Eng. Chem. Res. 2015, 55, 3313–3326. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Khajepour, A.; He, H.; Ji, J. Model predictive control power management strategies for HEVs: A review. J. Power Sources 2016, 341, 91–106. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive control (MPC). Build. Environ. 2014, 72, 343–355. [Google Scholar] [CrossRef]
- Van Keulen, T.; Naus, G.; De Jager, B.; Van De Molengraft, R.; Steinbuch, M.; Aneke, E. Predictive Cruise Control in Hybrid Electric Vehicles. World Electr. Veh. J. 2009, 3, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Farzaneh, H. Adaptive Cruise Control for Eco-Driving Based on Model Predictive Control Algorithm. Appl. Sci. 2020, 10, 5271. [Google Scholar] [CrossRef]
- Caldas, K.A.Q.; Grassi, V. Eco-Cruise NMPC Control for Autonomous Vehicles. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 356–361. [Google Scholar]
- Schmied, R.; Waschl, H.; Quirynen, R.; Diehl, M.; del Re, L. Nonlinear MPC for Emission Efficient Cooperative Adaptive Cruise Control. IFAC-PapersOnLine 2015, 48, 160–165. [Google Scholar] [CrossRef]
- Gaikwad, T.; Rabinowitz, A.; Motallebiaraghi, F.; Bradley, T.; Asher, Z.; Fong, A.; Meyer, R. Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2020. [Google Scholar] [CrossRef]
- Lonari, Y.; Kundu, S.; Agrawal, M.; Bellary, S. Drive Horizon: An Artificial Intelligent Approach to Predict Vehicle Speed for Realizing Predictive Powertrain Control; SAE Technical Paper 2020-01-0732; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Li, X. Deep reinforcement learning based lane detection and localization. Neurocomputing 2020, 413, 328–338. [Google Scholar] [CrossRef]
- Mahadika, P.; Subiantoro, A.; Kusumoputro, B. Neural Network Predictive Control Approach Design for Adaptive Cruise Control. Int. J. Technol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Ozkan, M.; Ma, Y. Eco-Driving of Connected and Automated Vehicle with Preceding Driver Behavior Prediction. J. Dyn. Syst. Meas. Control. 2021, 143, 011002. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, Y.P.; McMains, S.; Hedrick, J.K. Convolution Neural Network-Based Lane Change Intention Prediction of Surrounding Vehicles for ACC. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar]
- He, H.; Wang, Y.; Han, R.; Han, M.; Bai, Y.; Liu, Q. An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications. Energy 2021, 225, 120273. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Moujahid, A.; ElAraki Tantaoui, M.; Hina, M.D.; Soukane, A.; Ortalda, A.; ElKhadimi, A.; Ramdane-Cherif, A. Machine Learning Techniques in ADAS: A Review. In Proceedings of the 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018; pp. 235–242. [Google Scholar]
- Wang, P.; Chan, C.-Y.; de La Fortelle, A. A Reinforcement Learning Based Approach for Automated Lane Change Maneuvers. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 30 June–1 July 2018; pp. 1379–1384. [Google Scholar]
- Elmalaki, S.; Tsai, H.-R.; Srivastava, M. Sentio: Driver-in-the-Loop Forward Collision Warning Using Multisample Reinforcement Learning. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, New York, NY, USA, 4–7 November 2018; pp. 28–40. [Google Scholar]
- Vanderhaegen, F. Cooperation and learning to increase the autonomy of ADAS. Cogn. Technol. Work. 2011, 14, 61–69. [Google Scholar] [CrossRef]
- Prediction of Preceding Driver Behavior for Fuel Efficient Cooperative Adaptive Cruise Control. Available online: https://www.sae.org/publications/technical-papers/content/2014-01-0298/ (accessed on 5 July 2021).
- Jones, S.; Wikstrom, N.; Parrilla, A.F.; Patil, R.; Kural, E.; Massoner, A.; Grauers, A. Energy-Efficient Cooperative Adaptive Cruise Control Strategy using V2I. In Proceedings of the 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1420–1425. [Google Scholar] [CrossRef]
- Pu, Z.; Jiao, X.; Yang, C.; Fang, S. An Adaptive Stochastic Model Predictive Control Strategy for Plug-in Hybrid Electric Bus During Vehicle-Following Scenario. IEEE Access 2020, 8, 13887–13897. [Google Scholar] [CrossRef]
- Dahmane, Y.; Abdrakhmanov, R.; Adouane, L. Stochastic MPC for Optimal Energy Management Strategy of Hybrid Vehicle performing ACC with Stop&Go maneuvers. IFAC-PapersOnLine 2018, 51, 223–229. [Google Scholar] [CrossRef]
- Zhang, C.; Vahidi, A. Predictive Cruise Control with Probabilistic Constraints for Eco Driving. In Proceedings of the ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Arlington, VA, USA, 31 October–2 November 2011; pp. 233–238. [Google Scholar] [CrossRef]
- Qi, X.; Wang, P.; Wu, G.; Boriboonsomsin, K.; Barth, M.J. Connected Cooperative Ecodriving System Considering Human Driver Error. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2721–2733. [Google Scholar] [CrossRef] [Green Version]
- Ure, N.K.; Yavas, M.U.; Alizadeh, A.; Kurtulus, C. Enhancing Situational Awareness and Performance of Adaptive Cruise Control through Model Predictive Control and Deep Reinforcement Learning. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 626–631. [Google Scholar]
- Kazemi, H.; Mahjoub, H.N.; Tahmasbi-Sarvestani, A.; Fallah, Y.P. A Learning-Based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles. IEEE Trans. Intell. Veh. 2018, 3, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Wang, J.; Soffker, D. Prediction of Human Driver Behaviors Based on an Improved HMM Approach. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 30 June–1 July 2018; pp. 2066–2071. [Google Scholar]
- Yuan, W.; Li, Z.; Wang, C. Lane-change prediction method for adaptive cruise control system with hidden Markov model. Adv. Mech. Eng. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Hansen, A.; Hedrick, J.K. Probabilistic inference of traffic participants’ lane change intention for enhancing adaptive cruise control. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 855–860. [Google Scholar] [CrossRef]
- Sajadi-Alamdari, S.A.; Voos, H.; Darouach, M. Ecological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles. IEEE Intell. Transp. Syst. Mag. 2018, 12, 92–109. [Google Scholar] [CrossRef]
- Suh, J.; Chae, H.; Yi, K. Stochastic Model-Predictive Control for Lane Change Decision of Automated Driving Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 4771–4782. [Google Scholar] [CrossRef]
- Lin, F.; Chen, Y.; Zhao, Y.; Wang, S. Path tracking of autonomous vehicle based on adaptive model predictive control. Int. J. Adv. Robot. Syst. 2019, 16. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.N.; Khajepour, A.; Zheng, L. Holistic Adaptive Multi-Model Predictive Control for the Path Following of 4WID Autonomous Vehicles. IEEE Trans. Veh. Technol. 2020, 70, 69–81. [Google Scholar] [CrossRef]
- Franco, A.; Santos, V. Short-Term Path Planning with Multiple Moving Obstacle Avoidance Based on Adaptive MPC. In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Cosme, Portugal, 24–26 April 2019; pp. 1–7. [Google Scholar]
- Dixit, S.; Montanaro, U.; Dianati, M.; Oxtoby, D.; Mizutani, T.; Mouzakitis, A.; Fallah, S. Trajectory Planning for Autonomous High-Speed Overtaking in Structured Environments Using Robust MPC. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2310–2323. [Google Scholar] [CrossRef]
- Ming, T.; Deng, W.; Zhang, S.; Zhu, B. MPC-Based Trajectory Tracking Control for Intelligent Vehicles; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Batkovic, I.; Rosolia, U.; Zanon, M.; Falcone, P. A Robust Scenario MPC Approach for Uncertain Multi-Modal Obstacles. IEEE Control. Syst. Lett. 2020, 5, 947–952. [Google Scholar] [CrossRef]
- Wikström, N.; Parrilla, A.F.; Jones, S.J.; Grauers, A. Energy-Efficient Cooperative Adaptive Cruise Control with Receding Horizon of Traffic, Route Topology, and Traffic Light Information. SAE Int. J. Connect. Autom. Veh. 2019, 2, 87–98. [Google Scholar] [CrossRef]
- Takahama, T.; Akasaka, D. Model Predictive Control Approach to Design Practical Adaptive Cruise Control for Traffic Jam. Int. J. Automot. Eng. 2018, 9, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Frezza, G.; Evangelou, S.A. Ecological Adaptive Cruise Controller for a Parallel Hybrid Electric Vehicle. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020. [Google Scholar] [CrossRef]
- Yao, Q.; Tian, Y. A Model Predictive Controller with Longitudinal Speed Compensation for Autonomous Vehicle Path Tracking. Appl. Sci. 2019, 9, 4739. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, X.; Zhou, Q.; Tian, Y. A Model Predictive Controller with Switched Tracking Error for Autonomous Vehicle Path Tracking. IEEE Access 2019, 7, 53103–53114. [Google Scholar] [CrossRef]
- Kim, W.; Kim, N.; Yi, K.; Kim, H.J. Development of a path-tracking control system based on model predictive control using infrastructure sensors. Veh. Syst. Dyn. 2012, 50, 1001–1023. [Google Scholar] [CrossRef]
- Kural, E.; Aksun Güvenç, B. Model Predictive Adaptive Cruise Control. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1455–1461. [Google Scholar]
- He, D.; Qiu, T.; Luo, R. Fuel efficiency-oriented platooning control of connected nonlinear vehicles: A distributed economic MPC approach. Asian J. Control. 2019, 22, 1628–1638. [Google Scholar] [CrossRef]
- Rathai, K.M.M.; Amirthalingam, J.; Jayaraman, B. Robust Tube-MPC Based Lane Keeping System for Autonomous Driving Vehicles. In Proceedings of the Advances in Robotics, New York, NY, USA, 28 June 2017; pp. 1–6. [Google Scholar]
- Cesari, G.; Schildbach, G.; Carvalho, A.; Borrelli, F. Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways. IEEE Intell. Transp. Syst. Mag. 2017, 9, 23–35. [Google Scholar] [CrossRef]
- Guo, C.; Sentouh, C.; Popieul, J.-C.; Haué, J.-B. MPC-Based Shared Steering Control for Automated Driving Systems. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, Canada, 5–8 October 2017; pp. 129–134. [Google Scholar]
- Samuel, M.; Mohamad, M.; Hussein, M.; Saad, S.M. Lane Keeping Maneuvers Using Proportional Integral Derivative (PID) and Model Predictive Control (MPC). J. Robot. Control. 2021, 2, 78–82. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Liu, Y.; He, X.; Ji, X. A Linear Time-Varying MPC Method for Vehicle Path-Following Assistance Based on Steering Torque. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 4559–4564. [Google Scholar]
- Xia, Q.; Duan, J.; Gao, F.; Chen, T.; Yang, C. Automatic Generation Method of Test Scenario for ADAS Based on Complexity. In Proceedings of the Intelligent and Connected Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; Volume 1. [Google Scholar] [CrossRef]
- Khastgir, S.; Dhadyalla, G.; Birrell, S.; Redmond, S.; Addinall, R.; Jennings, P. Test Scenario Generation for Driving Simulators Using Constrained Randomization Technique. In Proceedings of the WCX™ 17: SAE World Congress Experience, Detrot, MI, USA, 4–6 April 2017; Volume 1. [Google Scholar] [CrossRef]
- Schildbach, G.; Soppert, M.; Borrelli, F. A collision avoidance system at intersections using Robust Model Predictive Control. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 233–238. [Google Scholar] [CrossRef]
- Zhang, B.; Zong, C.; Chen, G.; Zhang, B. Electrical Vehicle Path Tracking Based Model Predictive Control with a Laguerre Function and Exponential Weight. IEEE Access 2019, 7, 17082–17097. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, X.; Taghia, J.; Katupitiya, J. Force control of two-wheel-steer four-wheel-drive vehicles using model predictive control and sequential quadratic programming for improved path tracking. Int. J. Adv. Robot. Syst. 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, J.; Sunwoo, M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics. Int. J. Automot. Technol. 2014, 15, 1155–1164. [Google Scholar] [CrossRef]
- Yin, C.; Xu, B.; Chen, X.; Qin, Z.; Bian, Y.; Sun, N. Nonlinear Model Predictive Control for Path Tracking Using Discrete Previewed Points. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Virtual Conference, 20–23 September 2020; pp. 1–6. [Google Scholar]
- Li, L.; Jia, Z.; Cheng, T.; Jia, X. Optimal Model Predictive Control for Path Tracking of Autonomous Vehicle. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Washington, DC, USA, 6–7 January 2011; Volume 2, pp. 791–794. [Google Scholar]
- Sanchez, I.; D’Jorge, A.; Ferramosca, A.; Raffo, G.; Gonzlez, A.H. Path Following and Trajectory Tracking Model Predictive Control using Artificial Variables for Constrained Vehicles. In Proceedings of the 2019 XVIII Workshop on Information Processing and Control (RPIC), Salvador, Brazil, 18–20 September 2019; pp. 198–203. [Google Scholar] [CrossRef]
- Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive Control with Multiconstraints. IEEE Trans. Veh. Technol. 2016, 66, 952–964. [Google Scholar] [CrossRef]
- Dai, C.; Zong, C.; Chen, G. Path Tracking Control Based on Model Predictive Control with Adaptive Preview Characteristics and Speed-Assisted Constraint. IEEE Access 2020, 8, 184697–184709. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Zhang, B.; Zheng, S.; Lu, X.; Yu, Z. Path Tracking for Autonomous Vehicles Based on Nonlinear Model: Predictive Control Method. In Proceedings of the WCX SAE World Congress, Detroit, MI, USA, 9–11 April 2019. [Google Scholar] [CrossRef]
- Yu, J.; Pei, X.; Guo, X.; Lin, J.; Zhu, M. Path tracking framework synthesizing robust model predictive control and stability control for autonomous vehicle. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2020, 234, 2330–2341. [Google Scholar] [CrossRef]
- Yu, J.; Guo, X.; Pei, X.; Chen, Z.; Zhu, M.; Gong, B. Robust Model Predictive Control for Path Tracking of Autonomous Vehicle. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2019. [Google Scholar] [CrossRef]
- Xu, F.; Qu, Y.; Qu, T.; Chen, H.; Liang, D. Support Vector Machine Based Model Predictive Control for Vehicle Path Tracking Control. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, Q.; Nie, G.; Tian, Y. A Multi-Objective Model Predictive Control for Vehicle Adaptive Cruise Control System Based on a New Safe Distance Model. Int. J. Automot. Technol. 2021, 22, 475–487. [Google Scholar] [CrossRef]
- Ali, Z.; Jummani, S.; Shaikh, Y.; Marri, H.B. Analysis of nonlinear adaptive cruise control vehicle model during cut-in manoeuvre. Int. J. Ind. Syst. Eng. 2015, 20, 263. [Google Scholar] [CrossRef]
- Wang, M.; Yu, H.; Dong, G.; Huang, M. Dual-Mode Adaptive Cruise Control Strategy Based on Model Predictive Control and Neural Network for Pure Electric Vehicles. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 1220–1225. [Google Scholar] [CrossRef]
- Vajedi, M.; Azad, N.L. Ecological Adaptive Cruise Controller for Plug-In Hybrid Electric Vehicles Using Nonlinear Model Predictive Control. IEEE Trans. Intell. Transp. Syst. 2015, 17, 113–122. [Google Scholar] [CrossRef]
- Li, S.; Li, K.; Rajamani, R.; Wang, J. Model Predictive Multi-Objective Vehicular Adaptive Cruise Control. IEEE Trans. Control. Syst. Technol. 2010, 19, 556–566. [Google Scholar] [CrossRef]
- Moser, D.; Schmied, R.; Waschl, H.; Del Re, L. Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control. IEEE Trans. Control. Syst. Technol. 2017, 26, 114–127. [Google Scholar] [CrossRef]
- Al-Gabalawy, M.; Hosny, N.S.; Aborisha, A.-H.S. Model predictive control for a basic adaptive cruise control. Int. J. Dyn. Control. 2021, 9, 1132–1143. [Google Scholar] [CrossRef]
- Bageshwar, V.; Garrard, W.; Rajamani, R. Model Predictive Control of Transitional Maneuvers for Adaptive Cruise Control Vehicles. IEEE Trans. Veh. Technol. 2004, 53, 1573–1585. [Google Scholar] [CrossRef]
- Ali, Z.; Popov, A.A.; Charles, G. Model predictive control with constraints for a nonlinear adaptive cruise control vehicle model in transition manoeuvres. Veh. Syst. Dyn. 2013, 51, 943–963. [Google Scholar] [CrossRef]
- Chen, T.; Luo, Y.; Li, K. Multi-Objective Adaptive Cruise Control Based on Nonlinear Model Predictive Algorithm. In Proceedings of the 2011 IEEE International Conference on Vehicular Electronics and Safety, Beijing, China, 10–12 July 2011; pp. 274–279. [Google Scholar]
- Shakouri, P.; Ordys, A. Nonlinear Model Predictive Control approach in design of Adaptive Cruise Control with automated switching to cruise control. Control Eng. Pract. 2014, 26, 160–177. [Google Scholar] [CrossRef]
- Ali, Z.; Pathan, D.M. Parametric Study of Nonlinear Adaptive Cruise Control Vehicle Model by Vehicle Mass. In Proceedings of the Emerging Trends and Applications in Information Communication Technologies, Jamshoro, Pakistan, 28–30 March 2012; Chowdhry, B.S., Shaikh, F.K., Hussain, D.M.A., Uqaili, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 81–91. [Google Scholar]
- Kim, Y.; Guanetti, J.; Borrelli, F. Robust Eco Adaptive Cruise Control for Cooperative Vehicles. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 1214–1219. [Google Scholar]
- Schmied, R.; Moser, D.; Waschl, H.; Del Re, L. Scenario model predictive control for robust adaptive cruise control in multi-vehicle traffic situations. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 802–807. [Google Scholar] [CrossRef]
- Marzbanrad, J.; Karimian, N. Space control law design in adaptive cruise control vehicles using model predictive control. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2011, 225, 870–884. [Google Scholar] [CrossRef]
- Weißmann, A.; Görges, D.; Lin, X. Energy-Optimal Adaptive Cruise Control based on Model Predictive Control. IFAC-PapersOnLine 2017, 50, 12563–12568. [Google Scholar] [CrossRef]
- Jia, Y.; Jibrin, R.; Itoh, Y.; Görges, D. Energy-Optimal Adaptive Cruise Control for Electric Vehicles in Both Time and Space Domain based on Model Predictive Control. IFAC-PapersOnLine 2019, 52, 13–20. [Google Scholar] [CrossRef]
- Li, S.; Jia, Z.; Li, K.; Cheng, B. Fast Online Computation of a Model Predictive Controller and Its Application to Fuel Economy–Oriented Adaptive Cruise Control. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1199–1209. [Google Scholar] [CrossRef]
- Stanger, T.; del Re, L. A Model Predictive Cooperative Adaptive Cruise Control Approach. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 1374–1379. [Google Scholar]
- Moser, D.; Waschl, H.; Kirchsteiger, H.; Schmied, R.; del Re, L. Cooperative adaptive cruise control applying stochastic linear model predictive control strategies. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 3383–3388. [Google Scholar] [CrossRef]
- Ma, H.; Chu, L.; Guo, J.; Wang, J.; Guo, C. Cooperative Adaptive Cruise Control Strategy Optimization for Electric Vehicles Based on SA-PSO with Model Predictive Control. IEEE Access 2020, 8, 225745–225756. [Google Scholar] [CrossRef]
- Maxim, A.; Lazar, C.; Caruntu, C.F. Distributed Model Predictive Control Algorithm with Communication Delays for a Cooperative Adaptive Cruise Control Vehicle Platoon. In Proceedings of the 2020 28th Mediterranean Conference on Control and Automation (MED), Saint-Raphael, France, 15–18 September 2020; pp. 909–914. [Google Scholar] [CrossRef]
- Maxim, A.; Pauca, O.; Caruntu, C.F.; Lazar, C. Distributed Model Predictive Control Algorithm with Time-Varying Communication Delays for a CACC Vehicle Platoon. In Proceedings of the 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 8–10 October 2020; pp. 775–780. [Google Scholar] [CrossRef]
- Lopes, D.R.; Evangelou, S.A. Energy savings from an Eco-Cooperative Adaptive Cruise Control: A BEV platoon investigation. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019. [Google Scholar] [CrossRef]
- Lan, J.; Zhao, D.; Tian, D. Low-Latency Robust MPC for CACC under Variable Road Geometry. IFAC-PapersOnLine 2020, 53, 15116–15121. [Google Scholar] [CrossRef]
- Lopes, A.; Araújo, R.E. Model-based Predictive Control implementation for Cooperative Adaptive Cruise Control. U.Porto J. Eng. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Yang, Y.; Wang, J.; Liu, Z.; Li, J.; Nie, J.; Shen, Y.; Wu, L. Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication. Energy 2019, 189, 116120. [Google Scholar] [CrossRef]
- van Nunen, E.; Verhaegh, J.; Silvas, E.; Semsar-Kazerooni, E.; van de Wouw, N. Robust Model Predictive Cooperative Adaptive Cruise Control Subject to V2V Impairments. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Feng, S.; Song, Z.; Li, Z.; Zhang, Y.; Li, L. Robust Platoon Control in Mixed Traffic Flow Based on Tube Model Predictive Control. IEEE Trans. Intell. Veh. 2021. [Google Scholar] [CrossRef]
- Filho, C.M.; Terra, M.H.; Wolf, D.F. Safe Optimization of Highway Traffic with Robust Model Predictive Control-Based Cooperative Adaptive Cruise Control. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3193–3203. [Google Scholar] [CrossRef]
- Van Nunen, E.; Reinders, J.; Semsar-Kazerooni, E.; Van De Wouw, N. String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons. IEEE Trans. Intell. Veh. 2019, 4, 186–196. [Google Scholar] [CrossRef]
- Song, X.; Wang, K.; He, D. Switching Multi-Objective Receding Horizon Control for CACC of Mixed Vehicle Strings. IEEE Access 2020, 8, 79684–79694. [Google Scholar] [CrossRef]
- Feng, S.; Sun, H.; Zhang, Y.; Zheng, J.; Liu, H.X.; Li, L. Tube-Based Discrete Controller Design for Vehicle Platoons Subject to Disturbances and Saturation Constraints. IEEE Trans. Control Syst. Technol. 2019, 28, 1066–1073. [Google Scholar] [CrossRef]
- Capuano, A.; Spano, M.; Musa, A.; Toscano, G.; Misul, D.A. Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles. Energies 2021, 14, 5291. [Google Scholar] [CrossRef]
- Parikh, J.; Abuchaar, O.; Haidar, E.; Kailas, A.; Krishnan, H.; Nakajima, H.; Maile, M.; Meier, J.; Rajab, S.; Sharrab, Y.; et al. Vehicle-to-Infrastructure Program Cooperative Adaptive Cruise Control, Final Report. Available online: https://rosap.ntl.bts.gov/view/dot/3580 (accessed on 26 March 2021).
- J2735E: V2X Communications Message Set Dictionary—SAE International. Available online: https://www.sae.org/standards/content/j2735_202007/ (accessed on 9 July 2021).
- Zheng, Y.; Li, S.; Wang, J.; Cao, D.; Li, K. Stability and Scalability of Homogeneous Vehicular Platoon: Study on the Influence of Information Flow Topologies. IEEE Trans. Intell. Transp. Syst. 2015, 17, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, G.; Barth, M.J. A Review on Cooperative Adaptive Cruise Control (CACC) Systems: Architectures, Controls, and Applications. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2884–2891. [Google Scholar]
- Feng, S.; Zhang, Y.; Li, S.E.; Cao, Z.; Liu, H.X.; Li, L. String stability for vehicular platoon control: Definitions and analysis methods. Annu. Rev. Control 2019, 47, 81–97. [Google Scholar] [CrossRef]
- Naus, G.J.L.; Vugts, R.P.A.; Ploeg, J.J.; Van De Molengraft, M.J.G.; Steinbuch, M. String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach. IEEE Trans. Veh. Technol. 2010, 59, 4268–4279. [Google Scholar] [CrossRef]
- Ghasemi, A.; Kazemi, R.; Azadi, S. Stable Decentralized Control of a Platoon of Vehicles with Heterogeneous Information Feedback. IEEE Trans. Veh. Technol. 2013, 62, 4299–4308. [Google Scholar] [CrossRef]
- Ghasemi, A.; Kazemi, R.; Azadi, S. Stability analysis of bidirectional adaptive cruise control with asymmetric information flow. Proc. Inst. Mech. Eng. Part. C: J. Mech. Eng. Sci. 2014, 229, 216–226. [Google Scholar] [CrossRef]
- Swaroop, D.; Hedrick, J.K. Constant Spacing Strategies for Platooning in Automated Highway Systems. J. Dyn. Syst. Meas. Control 1999, 121, 462–470. [Google Scholar] [CrossRef]
- Li, S.E.; Zheng, Y.; Li, K.; Wang, J. An Overview of Vehicular Platoon Control under the Four-Component Framework. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 29 June–1 July 2015; pp. 286–291. [Google Scholar]
- Firoozi, R.; Nazari, S.; Guanetti, J.; O’Gorman, R.; Borrelli, F. Safe Adaptive Cruise Control with Road Grade Preview and V2V Communication. arXiv 2018, arXiv:1810.09000. [Google Scholar]
- Khosravinia, K.; Wang, S.; Lin, X. Eco-Driving Control of Connected and Automated Hybrid Electric Vehicles on Multi-lane Roads Using Model Predictive Control. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 1748–1756. [Google Scholar] [CrossRef]
- Wang, S.; Lin, X. Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios. Appl. Energy 2020, 271, 115233. [Google Scholar] [CrossRef]
- Stellet, J.E.; Zofka, M.R.; Schumacher, J.; Schamm, T.; Niewels, F.; Zollner, J.M. Testing of Advanced Driver Assistance Towards Automated Driving: A Survey and Taxonomy on Existing Approaches and Open Questions. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 1455–1462. [Google Scholar] [CrossRef]
- Broggi, A.; Buzzoni, M.; Debattisti, S.; Grisleri, P.; Laghi, M.C.; Medici, P.; Versari, P. Extensive Tests of Autonomous Driving Technologies. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1403–1415. [Google Scholar] [CrossRef]
- Li, L.; Huang, W.-L.; Liu, Y.; Zheng, N.-N.; Wang, F.-Y. Intelligence Testing for Autonomous Vehicles: A New Approach. IEEE Trans. Intell. Veh. 2016, 1, 158–166. [Google Scholar] [CrossRef]
- Bozza, F.; Cardone, M.; Gimelli, A.; Senatore, A.; Tuccillo, R. A Methodology for the Definition of Optimal Control Strategies of a VVT-Equipped SI Engine; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Sakhdari, B.; Azad, N.L. Adaptive Tube-Based Nonlinear MPC for Economic Autonomous Cruise Control of Plug-in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 11390–11401. [Google Scholar] [CrossRef]
- Luo, L.-H.; Liu, H.; Li, P.; Wang, H. Model predictive control for adaptive cruise control with multi-objectives: Comfort, fuel-economy, safety and car-following. J. Zhejiang Univ. A 2010, 11, 191–201. [Google Scholar] [CrossRef]
- Lan, J.; Zhao, D. Robust model predictive control for nonlinear parameter varying systems without computational delay. Int. J. Robust Nonlinear Control 2020, 31, 8273–8294. [Google Scholar] [CrossRef]
- Yu, C.; Zheng, Y.; Shyrokau, B.; Ivanov, V. MPC-Based Path Following Design for Automated Vehicles with Rear Wheel Steering. In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 7–9 March 2021; pp. 1–6. [Google Scholar]
- Brudigam, T.; Olbrich, M.; Wollherr, D.; Leibold, M. Stochastic Model Predictive Control with a Safety Guarantee for Automated Driving. IEEE Trans. Intell. Veh. 2021. [Google Scholar] [CrossRef]
- Bozza, F.; Gimelli, A.; Tuccillo, R. The Control of a VVA-Equipped SI Engine Operation by Means of 1D Simulation and Mathematical Optimization. SAE Tech. Pap. 2002. [Google Scholar] [CrossRef]
- Brancati, R.; Muccillo, M.; Tufano, F. Crank Mechanism Friction Modeling for Control-Oriented Applications. In Advances in Italian Mechanism Science; Springer: Cham, Switzerland, 2020; pp. 729–737. [Google Scholar] [CrossRef]
- de Nola, F.; Giardiello, G.; Gimelli, A.; Molteni, A.; Muccillo, M.; Lng, R.T. Definition of a Methodology Promoting the Use of 1D Thermo-Fluid Dynamic Analysis for the Reduction of the Experimental Effort in Engine Base Calibration; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Dang, R.; Wang, J.; Li, S.; Li, K. Coordinated Adaptive Cruise Control System with Lane-Change Assistance. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2373–2383. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, Y.; Zhang, X.; Zhang, T. Green Light Optimal Speed Advisory System Designed for Electric Vehicles Considering Queuing Effect and Driver’s Speed Tracking Error. IEEE Access 2020, 8, 208796–208808. [Google Scholar] [CrossRef]
- Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust MPC with the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066. [Google Scholar] [CrossRef]
- Petrillo, A.; Prati, M.V.; Santini, S.; Tufano, F. Improving the NOx Reduction Performance of an Euro VI d SCR System in Real-World Condition via Nonlinear Model Predictive Control. Int. J. Eng. Res. 2021. under review (ID: IJER-21-0306). [Google Scholar]
- Allamehzadeh, A.; De La Parra, J.U.; Hussein, A.; Garcia, F.; Olaverri-Monreal, C. Cost-efficient driver state and road conditions monitoring system for conditional automation. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1497–1502. [Google Scholar] [CrossRef]
- Lee, J.; Yang, J.H. Analysis of Driver’s EEG Given Take-Over Alarm in SAE Level 3 Automated Driving in a Simulated Environment. Int. J. Automot. Technol. 2020, 21, 719–728. [Google Scholar] [CrossRef]
- Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.M.; Mutz, F.; et al. Self-driving cars: A survey. Expert Syst. Appl. 2020, 165, 113816. [Google Scholar] [CrossRef]
- Seif, H.G.; Hu, X. Autonomous Driving in the iCity—HD Maps as a Key Challenge of the Automotive Industry. Engineering 2016, 2, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Drews, P.; Goldfain, B.; Rehg, J.; Theodorou, E.A. Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving. IEEE Trans. Robot. 2018, 34, 1603–1622. [Google Scholar] [CrossRef] [Green Version]
- Micheli, F.; Bersani, M.; Arrigoni, S.; Braghin, F.; Cheli, F. NMPC Trajectory Planner for Urban Autonomous Driving. arXiv 2021, arXiv:2105.04034. [Google Scholar]
- Lee, T.; Kang, Y. Performance Analysis of Deep Neural Network Controller for Autonomous Driving Learning from a Nonlinear Model Predictive Control Method. Electronics 2021, 10, 767. [Google Scholar] [CrossRef]
- Luciani, S.; Bonfitto, A.; Amati, N.; Tonoli, A. Model predictive control for comfort optimization in assisted and driverless vehicles. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef]
ADAS | Sampling Time [s] | Prediction Horizon [s] | Control Horizon [s] | Reference |
---|---|---|---|---|
PF | 0.02 | 0.5 | 0.1 | [58] |
PF | 0.04 | 0.5 | 0.2 | [56] |
PF | 0.05 | 0.5 | 0.25 | [56] |
PF | 0.05 | 0.75 | 0.25 | [56] |
PF | 0.05 | 0.5 | 0.2 | [60] |
PF | 0.02 | 1 | 0.3 | [65] |
PF | 0.02 | 1 | 0.3 | [66] |
PF | 0.05 | 2 | 0.05 | [67] |
ACC | 0.05 | 1 | 0.05 | [63] |
ACC | 0.1 | 1 | 0.4 | [68] |
ECO-ACC | 0.5 | 10 | - | [64] |
CACC | 0.5 | 2.5 | - | [69] |
CACC | 0.5 | 20 | - | [62] |
LK | 0.025 | 0.175 | - | [70] |
LK | 0.2 | 2 | - | [71] |
LK | 0.05 | 1.5 | - | [72] |
LK | 0.0025 | 0.0375 | 0.0075 | [73] |
LK | 0.01 | 1 | 0.3 | [74] |
Control Strategy | EGO Vehicle | Test Scenario | Test Reference | Fuel Economy | Reference |
---|---|---|---|---|---|
Eco-cruise NMPC | ICE vehicles | City path, 5.4 km real world map. Leader vehicle with a predefined speed profile. | Baseline CC | [29] | |
MPC-based Eco-ACC | HE vehicle | Leader vehicle with a predefined speed profile (WLTP). | Baseline CC | [64] | |
GRU-NMPC ACC | ICE vehicle | CARB diesel truck; EPA light-duty; EPA IM 240. | CDH, CTH, and ACC-CTH | [35] | |
Hybrid MPC CACC | ICE vehicle | Real-world route divided into eight scenarios, respect to initial phases for the traffic lights. A single preceding vehicle. | Commercially human driver model | [62] | |
Distributed EMPC CACC | ICE vehicles | Five-vehicle platoon. The leader velocity change from 25 to 26 m/s at the time instant 2 s; then the platoon tracks the new velocity. | Distributed target-tracking MPC strategy | [69] | |
NMPC Eco-CACC | BE vehicles | NEDC; WLTC; Experimental Data | Baseline ACC | [113] | |
Tube-based NMPC Eco-ACC | HE vehicle | FTP-75 drive cycle | Conventional NMPC | [141] |
Control Strategy | EGO Vehicle | Sensors/Communication Systems | In-Vehicle Real-time Systems | Reference |
---|---|---|---|---|
SCMPC-based lane change assistance | n.a. | O×TS RT 2002, including GPS and IMU | Speedgoat with Simulink Real-Time | [71] |
MPC-based CACC | BMW 320d F31, 120kW diesel engine | Real V2X | Real-Time simulator with VISSIM to model the traffic network | [44] |
SMPC-based GLOSA | BeiQi EU vehicle | NAV982-GNSS; Cohda wireless; real traffic flow statistics equipment | dSPACE Autobox; Raspberry Pi ROS | [150] |
Robust MPC for path tracking | Four in-wheel motor independent-drive electric vehicles | GPS/INS navigation system | MicroAutoBox dSPACE | [151] |
MPC-based Eco-ACC | BEV (Smart) | Electronically Scanning Radar (ESR); GPS | ROS on the Intel® Core™ i7 with a memory of 7.7 GiB PC | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, A.; Pipicelli, M.; Spano, M.; Tufano, F.; De Nola, F.; Di Blasio, G.; Gimelli, A.; Misul, D.A.; Toscano, G. A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems. Energies 2021, 14, 7974. https://doi.org/10.3390/en14237974
Musa A, Pipicelli M, Spano M, Tufano F, De Nola F, Di Blasio G, Gimelli A, Misul DA, Toscano G. A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems. Energies. 2021; 14(23):7974. https://doi.org/10.3390/en14237974
Chicago/Turabian StyleMusa, Alessia, Michele Pipicelli, Matteo Spano, Francesco Tufano, Francesco De Nola, Gabriele Di Blasio, Alfredo Gimelli, Daniela Anna Misul, and Gianluca Toscano. 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems" Energies 14, no. 23: 7974. https://doi.org/10.3390/en14237974
APA StyleMusa, A., Pipicelli, M., Spano, M., Tufano, F., De Nola, F., Di Blasio, G., Gimelli, A., Misul, D. A., & Toscano, G. (2021). A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems. Energies, 14(23), 7974. https://doi.org/10.3390/en14237974