Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Bio-Oil Characterization
2.3. Xerogel-like Synthesis
2.4. Chemical, Morphological and Textural Analysis
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Bio-Oil Properties and Condensation Reactions
3.2. Evaluation of Costs and Sustainable Characteristics
3.3. Textural, Morphological and Structural Properties of XGL-C
3.4. Electrochemical Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, P.J.; Bain, E.J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352–4355. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhang, W.; Alhebshi, N.A.; Salah, N.; Alshareef, H.N. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods 2020, 4, 1900853. [Google Scholar] [CrossRef]
- Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-Organic Framework as a Template for Porous Carbon Synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391. [Google Scholar] [CrossRef]
- Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016, 8, 718–724. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Singh, G.; Lakhi, K.S.; Sil, S.; Bhosale, S.V.; Kim, I.; Albahily, K.; Vinu, A. Biomass derived porous carbon for CO2 capture. Carbon 2019, 148, 164–186. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Saffar, T.; Bouafif, H.; Braghiroli, F.L.; Magdouli, S.; Langlois, A.; Koubaa, A. Production of Bio-based Polyol from Oxypropylated Pyrolytic Lignin for Rigid Polyurethane Foam Application. Waste Biomass Valorization 2020, 11, 6411–6427. [Google Scholar] [CrossRef]
- Pinheiro Pires, A.P.; Arauzo, J.; Fonts, I.; Domine, M.E.; Fernández Arroyo, A.; Garcia-Perez, M.E.; Montoya, J.; Chejne, F.; Pfromm, P.; Garcia-Perez, M. Challenges and Opportunities for Bio-oil Refining: A Review. Energy Fuels 2019, 33, 4683–4720. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, A.; Izquierdo, M.T.; Mathieu, S.; Medjahdi, G.; Fierro, V.; Celzard, A. Activated carbon xerogels derived from phenolic oil: Basic catalysis synthesis and electrochemical performances. Fuel Process. Technol. 2020, 205, 106427. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, B.; Zhang, X.; Xie, X.; Jin, L.; Cao, Q. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 19653–19663. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, B.; Li, H.-X.; Zhang, X.-H.; Tian, X.; Jin, L.; Cao, Q. Honeycomb-like carbon with tunable pore size from bio-oil for supercapacitor. Microporous Mesoporous Mater. 2020, 309, 110551. [Google Scholar] [CrossRef]
- Shaku, B.; Mofokeng, T.P.; Mongwe, T.H.; Coville, N.J.; Ozoemena, K.I.; Maubane-Nkadimeng, M.S. Physicochemical Properties of Nitrogen Doped Carbon Nano-onions Grown by Flame Pyrolysis from Grapeseed Oil for Use in Supercapacitors. Electroanalysis 2020, 32, 2946–2957. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, S.; Li, Q.; Gao, G.; Wang, Y.; He, F.; Hu, G.; Hu, X. Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. J. Colloid Interface Sci. 2021, 600, 681–690. [Google Scholar] [CrossRef]
- Li, J.; Xiao, R.; Li, M.; Zhang, H.; Wu, S.; Xia, C. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes. Fuel Process. Technol. 2019, 192, 239–249. [Google Scholar] [CrossRef]
- Grishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Pizzi, A.; Celzard, A. New tannin-lignin aerogels. Ind. Crops Prod. 2013, 41. [Google Scholar] [CrossRef]
- Braghiroli; Amaral-Labat; Boss; Lacoste; Pizzi Tannin Gels and Their Carbon Derivatives: A Review. Biomolecules 2019, 9, 587. [CrossRef] [Green Version]
- Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Rey-Raap, N.; Szczurek, A.; Fierro, V.; Menéndez, J.A.; Arenillas, A.; Celzard, A. Towards a feasible and scalable production of bio-xerogels. J. Colloid Interface Sci. 2015, 456, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Celzard, A. Unique bimodal carbon xerogels from soft templating of tannin. Mater. Chem. Phys. 2015, 149–150, 193–201. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; Grishechko, L.I.; Fierro, V.; Kuznetsov, B.N.; Pizzi, A.; Celzard, A. Tannin-based xerogels with distinctive porous structures. Biomass Bioenergy 2013, 56, 437–445. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Pizzi, A.; Celzard, A. Systematic studies of tannin–formaldehyde aerogels: Preparation and properties. Sci. Technol. Adv. Mater. 2013, 14, 015001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczurek, A.; Amaral-Labat, G.; Fierro, V.; Pizzi, A.; Masson, E.; Celzard, A. The use of tannin to prepare carbon gels. Part I: Carbon aerogels. Carbon N. Y. 2011, 49, 2773–2784. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 1989, 27, 457–467. [Google Scholar] [CrossRef]
- Yun, M.H.; Yeon, J.W.; Hwang, J.; Hong, C.S.; Song, K. A calibration technique for an Ag/AgCl reference electrode utilizing the relationship between the electrical conductivity and the KCl concentration of the internal electrolyte. J. Appl. Electrochem. 2009, 39, 2587–2592. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.R.R.; Hassan, A.; Abdel-Aty, A.A.R.; Saber, M.R.; Ghannam, R.; Anis, B.; Heidari, H.; Khalil, A.S.G. High Performance Supercapacitor Based on Laser Induced Graphene for Wearable Devices. IEEE Access 2020, 8, 200573–200580. [Google Scholar] [CrossRef]
- Scholze, B.; Meier, D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 2001, 60, 41–54. [Google Scholar] [CrossRef]
- Turunen, M.; Alvila, L.; Pakkanen, T.T.; Rainio, J. Modification of phenol-formaldehyde resol resins by lignin, starch, and urea. J. Appl. Polym. Sci. 2003, 88, 582–588. [Google Scholar] [CrossRef]
- Sarathchandran, C.; Ilangovan, S.A. Carbon aerogels: Synthesis, properties, and applications. In Handbook of Carbon-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 739–781. [Google Scholar]
- Grishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Celzard, A. Lignin-phenol-formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013, 168, 19–29. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, J.; Zhu, X. Corrosion properties of bio-oil and its emulsions with diesel. Chinese Sci. Bull. 2008, 53, 3726–3734. [Google Scholar] [CrossRef]
- Szczurek, A.; Amaral-Labat, G.; Fierro, V.; Pizzi, A.; Celzard, A. The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon 2011, 49, 2785–2794. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; da Silva, E.L.; Cuña, A.; Malfatti, C.F.; Marcuzzo, J.S.; Baldan, M.R.; Celzard, A.; Fierro, V.; Lenz e Silva, G.F.B. A Sustainable Carbon Material from Kraft Black Liquor as Nickel-Based Electrocatalyst Support for Ethanol Electro-Oxidation. Waste Biomass Valorization 2020, 12, 2507–2519. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; Grishechko, L.; Szczurek, A.; Fierro, V.; Pizzi, A.; Kuznetsov, B.; Celzard, A. Highly mesoporous organic aerogels derived from soy and tannin. Green Chem. 2012, 14, 3099–3106. [Google Scholar] [CrossRef]
- Paysepar, H.; Hu, Y.; Feng, S.; Yuan, Z.; Shui, H.; Xu, C. (Charles) Bio-phenol formaldehyde (BPF) resoles prepared using phenolic extracts from the biocrude oils derived from hydrothermal liquefaction of hydrolysis lignin. React. Funct. Polym. 2020, 146, 104442. [Google Scholar] [CrossRef]
- Li, B.; Yuan, Z.; Schmidt, J.; Xu, C.C. New foaming formulations for production of bio-phenol formaldehyde foams using raw kraft lignin. Eur. Polym. J. 2019, 111, 1–10. [Google Scholar] [CrossRef]
- Celikbag, Y.; Nuruddin, M.; Biswas, M.; Asafu-Adjaye, O.; Via, B.K. Bio-oil-based phenol–formaldehyde resin: Comparison of weight- and molar-based substitution of phenol with bio-oil. J. Adhes. Sci. Technol. 2020, 34, 2743–2754. [Google Scholar] [CrossRef]
- Sebestyén, Z.; Jakab, E.; Badea, E.; Barta-Rajnai, E.; Şendrea, C.; Czégény, Z. Thermal degradation study of vegetable tannins and vegetable tanned leathers. J. Anal. Appl. Pyrolysis 2019, 138, 178–187. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Szczurek, A.; Fierro, V.; Celzard, A.; Menéndez, J.A.; Arenillas, A. Advances in tailoring the porosity of tannin-based carbon xerogels. Ind. Crops Prod. 2016, 82, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cantu, L.; Liebner, F.; Smirnova, I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014, 195, 303–310. [Google Scholar] [CrossRef]
- Celzard, A.; Fierro, V.; Amaral-Labat, G. Adsorption by Carbon Gels. In Novel Carbon Adsorbents; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780080977447. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909. [Google Scholar] [CrossRef]
- Elaiyappillai, E.; Srinivasan, R.; Johnbosco, Y.; Devakumar, P.; Murugesan, K.; Kesavan, K.; Johnson, P.M. Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Appl. Surf. Sci. 2019, 486, 527–538. [Google Scholar] [CrossRef]
- Bratek, W.; Światkowski, A.; Pakuła, M.; Biniak, S.; Bystrzejewski, M.; Szmigielski, R. Characteristics of activated carbon prepared from waste PET by carbon dioxide activation. J. Anal. Appl. Pyrolysis 2013, 100, 192–198. [Google Scholar] [CrossRef]
- Hao, G.-P.; Li, W.-C.; Lu, A.-H. Novel porous solids for carbon dioxide capture. J. Mater. Chem. 2011, 21, 6447–6451. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Yu, J.-S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 2014, 262, 224–231. [Google Scholar] [CrossRef]
- Chang, B.; Guo, Y.; Li, Y.; Yin, H.; Zhang, S.; Yang, B.; Dong, X. Graphitized hierarchical porous carbon nanospheres: Simultaneous activation/graphitization and superior supercapacitance performance. J. Mater. Chem. A 2015, 3, 9565–9577. [Google Scholar] [CrossRef]
Bio-Oil | Tannin | ||
---|---|---|---|
Bonds | Wavenumber (cm−1) | Bonds | Wavenumber (cm−1) |
Aromatic and aliphatic O-H | 3800–3000 | O-H groups | 3800–3000 |
C-H in methyl and methylene groups | 2935, 2845 | C-H stretching vibrations | 2927 |
carbonyl in unconjugated C=O | 1708 | ||
Phenylpropane skeleton vibrations | 1610, 1516, 1462 | Aromatic C=C in phenolic groups | 1618, 1453 |
C-O in syringyl groups | 1370 | ||
C-H in guayacil rings | 1273 | ||
C-H in aromatic rings | 1115, 1033 | Multisubstituted aromatic rings | 1000–750 |
Aromatic C-H stretching | 824 | C-H in aromatic rings | 841 |
Type of Material | System | Renewable Material (wt%) | Reference |
---|---|---|---|
Aerogel | Tannin-formaldehyde | 57.5 | [24,25] |
Xerogel | Tannin-formaldehyde-pluronic | 57.5 | [23] |
Xerogel-like | Tannin-formaldehyde-bio-oil | 77.0 | This work |
Xerogel | Tannin-resorcinol-formaldehyde- sodium dodecyl sulfate | 83.2 | [21] |
Xerogel | Tannin-formaldehyde sodium dodecyl sulfate | 89.7 | [42] |
Samples | C (%) | H (%) | N (%) | O (%) | SBET (m2 g−1) | V0.97 (cm3 g−1) | VDR (cm3 g−1) | Vmeso (cm3 g−1) | Micro (%) | Meso (%) |
---|---|---|---|---|---|---|---|---|---|---|
XGL-C | 84.6 | 1.1 | 0.4 | 13.9 | 286 | 0.15 | 0.11 | 0.05 | 69 | 31 |
XGL-AC | 78.5 | 1.5 | 0.2 | 19.8 | 808 | 0.45 | 0.33 | 0.15 | 68 | 32 |
Bio-Oil Source | Carbon Material | Additional Chemicals | Chemical Activator | Electrolyte | CS (F/g) | Current Density (A/g) | SBET (m2/g) | References |
---|---|---|---|---|---|---|---|---|
Grapeseed | Nitrogen-doped carbon nano-onion | Gas NH3 (Ns) | KOH | 2 M KOH | 54 * | 0.1 | 116 | [15] |
Pine granule | Bio-oil derived hierarchical porous carbon | Nano-MgO (p-a.a) | - | 6 M KOH | 344 ** | 0.5 | 1409 | [17] |
Poplar wood sawdust | Bio-oil honeycomb carbon | Cetyltrimethylammonium bromide (p-a.a) | KOH | 6 M KOH | 312 ** | 1 | 1302 | [14] |
Poplar wood sawdust | Nitrogen-doped porous carbon nanosheet | Melamine (Ns) | KOH | 6 M KOH | 289 ** | 0.5 | 2566 | [13] |
Tilia Americana wood waste | Xerogel-like carbon | - | - | 6 M KOH | 92 ** | 0.1 | 286 | This work |
Tilia Americana wood waste | Xerogel-like activated carbon | - | CO2 | 6 M KOH | 132 ** | 0.1 | 808 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral-Labat, G.; Munhoz, M.G.C.; Fonseca, B.C.d.S.; Boss, A.F.N.; de Almeida-Mattos, P.; Braghiroli, F.L.; Bouafif, H.; Koubaa, A.; Lenz e Silva, G.F.B.; Baldan, M.R. Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances. Energies 2021, 14, 7977. https://doi.org/10.3390/en14237977
Amaral-Labat G, Munhoz MGC, Fonseca BCdS, Boss AFN, de Almeida-Mattos P, Braghiroli FL, Bouafif H, Koubaa A, Lenz e Silva GFB, Baldan MR. Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances. Energies. 2021; 14(23):7977. https://doi.org/10.3390/en14237977
Chicago/Turabian StyleAmaral-Labat, Gisele, Manuella Gobbo C. Munhoz, Beatriz Carvalho da Silva Fonseca, Alan Fernando Ney Boss, Patricia de Almeida-Mattos, Flavia Lega Braghiroli, Hassine Bouafif, Ahmed Koubaa, Guilherme F. B. Lenz e Silva, and Maurício Ribeiro Baldan. 2021. "Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances" Energies 14, no. 23: 7977. https://doi.org/10.3390/en14237977
APA StyleAmaral-Labat, G., Munhoz, M. G. C., Fonseca, B. C. d. S., Boss, A. F. N., de Almeida-Mattos, P., Braghiroli, F. L., Bouafif, H., Koubaa, A., Lenz e Silva, G. F. B., & Baldan, M. R. (2021). Xerogel-like Materials from Sustainable Sources: Properties and Electrochemical Performances. Energies, 14(23), 7977. https://doi.org/10.3390/en14237977