Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites
Abstract
:1. Introduction
2. Specimen Preparation and Experimental Methods
2.1. Sample Preparation Procedure
2.2. Corona and Surface Discharge Inception Studies
2.3. Surface Potential Measurement under SI Voltages
2.4. Space Charge Measurement
2.5. Thermal Expansion Coefficient
2.6. Thermo-Gravimetric Analysis (TGA)
3. Results and Discussion
3.1. Surface Discharge and Corona Inception Studies
3.2. Surface Potential and Trap Characteristics under Switching Impulse (SI) Voltages
3.3. Space Charge Analysis during Polarity Reversal
3.4. Coefficient of Thermal Expansion (CTE)
3.5. Thermo-Gravimetric Studies
4. Conclusions
- Increments in MgO filler weight percentage up to 3 wt.% tend to enhance surface discharge and corona inception voltages measured using fluorescence and UHF methods, under both AC and DC voltage profiles.
- Reduced initial surface potential and increased λ is noticed after inclusion of MgO nanoparticles. In comparison to other test samples, the 3 wt.% specimen shows higher λ value and lower trap depth at peak trap density, reflecting the presence of relatively shallower traps.
- Before and after the polarity reversal phenomena, heterocharge formation is seen in the bulk of test specimens. In comparison with other test samples, the 3 wt.% specimen had a lower electric field enhancement factor.
- After MgO filler was added to GFRP nanocomposites, the CTE values have reduced, with the 3 wt.% specimen having the lowest CTE value.
- TGA measurements revealed an increase in Tmax and residual weight in nano MgO filled GFRP composites, showing that the thermal stability of the GFRP composites has increased after incorporation of MgO nanoparticles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanaka, T.; Imai, T. Advanced Nanodielectrics: Fundamentals and Applications, 2nd ed.; Pan Stanford Publishing: Singapore, 2017. [Google Scholar]
- Silwal, B.; Sergeant, P. Thermally Induced Mechanical Stress in the Stator Windings of Electrical Machines. Energies 2018, 11, 2113. [Google Scholar] [CrossRef] [Green Version]
- Verginadis, D.; Karlis, A.; Danikas, M.G.; Antonino-Daviu, J.A. Investigation of Factors Affecting Partial Discharges on Epoxy Resin: Simulation, Experiments, and Reference on Electrical Machines. Energies 2021, 14, 6621. [Google Scholar] [CrossRef]
- Danikas, M.G.; Sarathi, R. Electrical machine insulation: Traditional insulating materials, nanocomposite polymers and the question of electrical trees. Funktechnikplus# J. 2014, 1, 7. [Google Scholar]
- Danikas, M.G.; Karlis, A. Some observations on the dielectric breakdown and the importance of cavities in insulating materials used for cables and electrical machines. Adv. Electr. Comp. Eng. 2011, 11, 123–126. [Google Scholar] [CrossRef]
- Andraschek, N.; Wanner, A.J.; Ebner, C.; Riess, G. Mica/Epoxy-Composites in the Electrical Industry: Applications, Composites for Insulation, and Investigations on Failure Mechanisms for Prospective Optimizations. Polymers 2016, 8, 201. [Google Scholar] [CrossRef]
- Hornak, J.; Mentlík, V.; Trnka, P.; Šutta, P. Synthesis and Diagnostics of Nanostructured Micaless Microcomposite as a Prospective Insulation Material for Rotating Machines. Appl. Sci. 2019, 9, 2926. [Google Scholar] [CrossRef] [Green Version]
- Muto, H. Dielectric Breakdown and Partial Discharge Properties of Nanocomposites for Epoxy/Mica Insulation system in Large-size Rotating Machines. In Proceedings of the International Symposium on Electrical Insulating Materials, Tokyo, Japan, 13–17 September 2020; p. 45. [Google Scholar]
- Hildinger, T.; Weidner, J.R. Progress in development of a nanocomposite stator winding insulation system for improved generator performance. In Proceedings of the Electrical Insulation Conference, Baltimore, MD, USA, 11–14 June 2017; p. 139. [Google Scholar]
- Wang, S.; Chen, Y.; Mao, J.; Liu, C.; Zhang, L.; Cheng, Y.; Du, C.; Tanaka, T. Dielectric strength of glass fibre fabric reinforced epoxy by nano-Al2O3. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1086–1094. [Google Scholar] [CrossRef]
- Abd Rahman, M.S.; Ab Kadir, M.Z.A.; Abd Rahman, M.S.; Osman, M.; Mohd Nor, S.F.; Zainuddin, N.M. Investigation of Insulation Characteristics of GFRP Crossarm Subjected to Lightning Transient. Energies 2021, 14, 4386. [Google Scholar] [CrossRef]
- Bazli, M.; Abolfazli, M. Mechanical Properties of Fiber Reinforced Polymers under Elevated Temperatures: An Overview. Polymers 2020, 12, 2600. [Google Scholar] [CrossRef]
- Andritsch, T.; Kochetov, R.; Morshuis, P.H.; Smit, J.J. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. In Proceedings of the International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010; p. 1. [Google Scholar]
- Wu, K.; Wang, Z.; Zhao, C.; Huang, Y.; Li, J.; Li, S. Surface treeing and segmented worm model of tracking behavior in MgO/Epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2067–2075. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, C.; Hu, X.; Guo, P.; Zhang, J.; Wang, Z.; Wu, K.; Li, J. Surface tracking of MgO/epoxy nanocomposites: Effect of surface hydrophobicity. Appl. Sci. 2019, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- Hornak, J.; Trnka, P.; Kadlec, P.; Michal, O.; Mentlík, V.; Šutta, P.; Csányi, G.M.; Tamus, Z.Á. Magnesium oxide nanoparticles: Dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties. Nanomaterials 2018, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Andritsch, T.; Kochetov, R.; Lennon, B.; Morshuis, P.H.; Smit, J.J. Space charge behavior of magnesium oxide filled epoxy nanocomposites at different temperatures and electric field strengths. In Proceedings of the Electrical Insulation Conference, Annapolis, MD, USA, 5–8 June 2011; p. 136. [Google Scholar]
- Nitta, T.; Chiba, M.; Uematsu, H. Characteristic of AC surface spark voltage in LN2 and LHe. IEEE Trans. Appl. Supercond. 2000, 10, 1325–1328. [Google Scholar] [CrossRef]
- Verginadis, D.; Danikas, M.G.; Sarathi, R. Study of the phenomena of surface discharges and flashover in nanocomposite epoxy resin under the influence of homogeneous electric fields. Eng. Technol. Appl. Sci. Res. 2019, 9, 4315–4321. [Google Scholar]
- Sarathi, R.; Giridhar, A.V.; Sethupathi, K. Understanding the incipient discharge activity in liquid nitrogen under AC voltage by adopting UHF technique. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 707–713. [Google Scholar] [CrossRef]
- Farenc, J.; Mangeret, R.; Boulanger, A.; Destruel, P.; Lescure, M. A fluorescent plastic optical fiber sensor for the detection of corona discharges in high voltage electrical equipment. Rev. Sci. Instrum. 1994, 65, 155–160. [Google Scholar] [CrossRef]
- Naveen, J.; Sarathi, R.; Srinivasan, B. Fluorescent fiber-based identification of incipient discharges in liquid nitrogen. Cryogenics 2021, 120, 103376. [Google Scholar] [CrossRef]
- Muto, K. Electric-discharge sensor utilizing fluorescent optical fiber. J. Lightwave Technol. 1989, 7, 1029–1032. [Google Scholar] [CrossRef]
- Chen, G.; Hao, M.; Xu, Z.; Vaughan, A.; Cao, J.; Wang, H. Review of high voltage direct current cables. CSEE J. Power Energy Syst. 2015, 1, 9. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Wu, K.; Peng, Z.R.; Cheng, Y.H.; Tu, D.M. Effect of voltage reversal on space charge and transient field in LDPE films under temperature gradient. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 140–149. [Google Scholar] [CrossRef]
- Du, B.X.; Li, A. Effects of DC and pulse voltage combination on surface charge dynamic behaviors of epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2025–2033. [Google Scholar] [CrossRef]
- Seretis, G.V.; Nitodas, S.F.; Mimigianni, P.D.; Kouzilos, G.N.; Manolakos, D.E.; Provatidis, C.G. On the post-curing of graphene nanoplatelets reinforced hand lay-up glass fabric/epoxy nanocomposites. Compos. B Eng. 2018, 140, 133–138. [Google Scholar] [CrossRef]
- Naveen, J.; Babu, M.S.; Sarathi, R. Impact of MgO nanofiller-addition on electrical and mechanical properties of glass fiber reinforced epoxy nanocomposites. J. Polym. Res. 2021, 28, 377. [Google Scholar] [CrossRef]
- Ju, T.; Zhongrong, X.; Xiaoxing, Z.; Caixin, S. GIS partial discharge quantitative measurements using UHF microstrip antenna sensors. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; p. 116. [Google Scholar]
- Boeck, W.; Albiez, M.; Bengtsson, T.; Diessner, A.; Feger, R.; Feser, K.; Girodet, A.; Gulski, E.; Hampton, B.F.; Hücker, T.; et al. Partial discharge detection system for GIS: Sensitivity Verification for the UHF method and the acoustic method. ÉLECTRA 1999, 183, 75–87. [Google Scholar]
- Ahmed, N.H.; Srinivas, N.N. Review of space charge measurements in dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 644–656. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Zhang, L.; Pang, P.; Shen, S. A novel PD detection technique for use in GIS based on a combination of UHF and optical sensors. IEEE Trans. Instrum. Meas. 2018, 68, 2890–2897. [Google Scholar] [CrossRef]
- Mu, H.B.; Zhang, G.J.; Komiyama, Y.; Suzuki, S.; Miyake, H.; Tanaka, Y.; Takada, T. Investigation of surface discharges on different polymeric materials under HVAC in atmospheric air. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 485–494. [Google Scholar]
- Kozako, M.; Kido, R.; Imai, T.; Ozaki, T.; Shimizu, T.; Tanaka, T. Surface roughness change of epoxy/TiO2 nanocomposites due to partial discharges. In Proceedings of the International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 5–9 June 2005; p. 661. [Google Scholar]
- Kozako, M.; Fuse, N.; Ohki, Y.; Okamoto, T.; Tanaka, T. Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 833–839. [Google Scholar] [CrossRef]
- Du, B.X.; Li, J.; Du, Q.; Fu, M.L. Surface charge and flashover voltage of EVA/CB nanocomposite under mechanical stresses. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3734–3741. [Google Scholar] [CrossRef]
- Yu, S.; Li, S.; Wang, S.; Huang, Y.; Tariq Nazir, M.; Phung, B.T. Surface flashover properties of epoxy based nanocomposites containing functionalized nano-TiO2. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1567–1576. [Google Scholar]
- Charalambous, C.; Danikas, M.G.; Yin, Y.; Vordos, N.; Nolan, J.W.; Mitropoulos, A. Study of the behavior of water droplets under the influence of a uniform electric field on conventional polyethylene and on crosslinked polyethylene (XLPE) with MgO nanoparticles samples. Eng. Technol. Appl. Sci. Res. 2017, 7, 1323–1328. [Google Scholar] [CrossRef]
- Simmons, J.G.; Tam, M.C. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys. Rev. B 1973, 7, 3706. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Wang, M.; Du, B. Magnetic field induced variation in surface charge accumulation behavior on epoxy/Al2O3 nanocomposites under DC stress. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 859–867. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.C.; Dardano, A.; Guastavino, G.; Testa, L.; Sangermano, M. Space charge dynamics in nanostructured epoxy resin. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Quebec, QC, Canada, 26–29 October 2008; p. 710. [Google Scholar]
- Liu, P.; Ning, X.; Peng, Z.; Xiang, Z.; Feng, H.; Zhang, H. Effect of temperature on space charge characteristics in epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 65–71. [Google Scholar] [CrossRef]
- Yasmin, A.; Daniel, I.M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 2004, 45, 8211–8219. [Google Scholar] [CrossRef]
Sample | Positive SI | Negative SI | ||||
---|---|---|---|---|---|---|
Initial Surface Potential (V) | Decay Rate (s−1) | Trap Depth (eV) | Initial Surface Potential (V) | Decay Rate (s−1) | Trap Depth (eV) | |
0 wt.% | 3586 | 0.002235 | 0.8718 | 3669 | 0.002230 | 0.8719 |
1 wt.% | 3413 | 0.002332 | 0.8707 | 3463 | 0.002306 | 0.8710 |
3 wt.% | 3259 | 0.003188 | 0.8626 | 3337 | 0.002969 | 0.8644 |
5 wt.% | 3490 | 0.002356 | 0.8704 | 3557 | 0.002372 | 0.8707 |
Sample | Tmax (°C) | Residual Weight at 750 °C (%) |
---|---|---|
0 wt.% | 362.6 | 52.70 |
1 wt.% | 363.1 | 59.87 |
3 wt.% | 363.4 | 61.76 |
5 wt.% | 365.4 | 62.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveen, J.; Sukesh Babu, M.; Sarathi, R.; Velmurugan, R.; Danikas, M.G.; Karlis, A. Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites. Energies 2021, 14, 8005. https://doi.org/10.3390/en14238005
Naveen J, Sukesh Babu M, Sarathi R, Velmurugan R, Danikas MG, Karlis A. Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites. Energies. 2021; 14(23):8005. https://doi.org/10.3390/en14238005
Chicago/Turabian StyleNaveen, Janjanam, Myneni Sukesh Babu, Ramanujam Sarathi, Ramachandran Velmurugan, Michael G. Danikas, and Athanasios Karlis. 2021. "Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites" Energies 14, no. 23: 8005. https://doi.org/10.3390/en14238005
APA StyleNaveen, J., Sukesh Babu, M., Sarathi, R., Velmurugan, R., Danikas, M. G., & Karlis, A. (2021). Investigation on Electrical and Thermal Performance of Glass Fiber Reinforced Epoxy–MgO Nanocomposites. Energies, 14(23), 8005. https://doi.org/10.3390/en14238005