Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Biomass Preparation
2.1.2. Chemical Reagents and Enzyme
2.2. Processing Conditions by RSM
2.3. Hydrothermal Acid Pretreatment
2.4. Enzymatic Hydrolysis
2.5. Analytical Method
3. Results and Discussion
3.1. Hydrothermal Acid Pretreatment
3.2. Enzymatic Hydrolysis
4. Conclusions
- In sequential hydrolysis, the temperature had a relatively greater effect than time and HCl concentration on the RS.
- The experimental conditions of hydrothermal acid pretreatment were: 143.6 °C, 22 min, and 0.108 N HCl. Under these conditions, the experimental yield was 115.6 ± 0.4 mg/g.
- The experimental conditions for enzymatic hydrolysis were 8.17% v/w Celluclast® 1.5 L, 26.4 h, and 42.6 °C. Under these conditions, the experimental yield was 117.7 ± 0.3 mg/g.
- As a result of sequential hydrolysis, the reducing sugar yield produced from Saccharina japonica biomass was 183.5 ± 0.6 mg/g.
Author Contributions
Funding
Conflicts of Interest
References
- Offei, F.; Mensah, M.; Thygesen, A.; Kemasuor, F. Seaweed bioethanol production: A Process selection review on hydrolysis and fermentation. Fermentation 2018, 4, 99. [Google Scholar] [CrossRef] [Green Version]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A brief review of anaerobic digestion of algae for bioenergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef] [Green Version]
- Milledge, J.J.; Harvey, P.J. Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J. Chem. Technol. Biotechnol. 2016, 91, 2221–2234. [Google Scholar] [CrossRef]
- Sharma, S.; Horn, S.J. Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresor. Technol. 2016, 213, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lüning, K. Seaweeds, Their Environment, Biogeography and Ecophysiology; John Wiley & Sons, Inc.: New York, NY, USA, 1990; ISBN 0471624349. [Google Scholar]
- Jones, C.S.; Mayfield, S.P. Algae biofuels: Versatility for the future of bioenergy. Curr. Opin. Biotechnol. 2012, 23, 346–351. [Google Scholar] [CrossRef]
- Kloareg, B.; Quatrano, R.S. Structure of cell walls of marine algae and ecophysiological funtions of the matrix polysaccharides. Oceanogr. Mar. Biol. 1988, 26, 259–315. [Google Scholar]
- Wickramaarachchi, K.; Sundaram, M.M.; Henry, D.J.; Gao, X. Alginate biopolymer effect on the electrodeposition of manganese dioxide on electrodes for supercapacitor. ACS Appl. Energy Mater. 2021, 4, 7040–7051. [Google Scholar] [CrossRef]
- Ramkumar, R.; Minakshi, M. Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 2015, 44, 6158–6168. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Blackford, M.; Ionescu, M. Characterization of alkaline-earth oxide additions to the MnO2 cathode in an aqueous secondary battery. J. Alloys Compd. 2011, 509, 5974–5980. [Google Scholar] [CrossRef] [Green Version]
- Enquist-Newman, M.; Faust, A.M.; Bravo, D.D.; Santos, C.N.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Reqitsky, D.D.; Cooper, S.R.; et al. Effcient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 2014, 19, 32–40. [Google Scholar] [CrossRef]
- Horn, S.J. Bioenergy from Brown Seaweeds. Ph.D Thesis, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway, 2000. [Google Scholar]
- Hu, G.; Heitmann, J.A.; Rojas, O.J. Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. Bioresources 2008, 3, 270–294. [Google Scholar]
- Amamou, S.; Sambusiti, C.; Monlau, F.; Dubreucq, E.; Barakat, A. Mechano-enzymatic deconstruction with a new enzymatic cocktail to enhance enzymatic hydrolysis and bioethanol fermentation of two macroalgae species. Molecules 2018, 23, 174. [Google Scholar] [CrossRef] [Green Version]
- Montingelli, M.E.; Benyounis, K.Y.; Stokes, J.; Olabi, A.G. Pretreatment of macroalgal biomass for biogas production. Energy Convers. Manag. 2016, 108, 202–209. [Google Scholar] [CrossRef]
- Montingelli, M.E.; Benyounis, K.Y.; Quilty, B.; Stokes, J.; Olabi, A.G. Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production. Energy 2017, 118, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Milledge, J.J.; Nielsen, B.V.; Sadek, M.S.; Harvey, P.J. Effect of FreshwaterWashing Pretreatment on Sargassum muticum as a Feedstock for Biogas Production. Energy 2018, 11, 1771. [Google Scholar]
- Schultz-Jensen, N.; Thygesen, A.; Leipold, F.; Thomsen, S.T.; Roslander, C.; Lilholt, H.; Bjerre, A.B. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol—Comparison of five pretreatment technologies. Bioresour. Technol. 2013, 140, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, F.; Pastare, L.; Sabunas, A.; Balin, A.K.; Blumberga, D. Effects of pre-treatment on Biochemical Methane Potential (BMP) testing using Baltic Sea Fucus vesiculosus feedstock. Biomass Bioenergy 2017, 105, 23–31. [Google Scholar] [CrossRef]
- Yazdani, P.; Zamani, A.; Karimi, K.; Taherzadeh, M.J. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Bioresour. Technol. 2015, 176, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Vivekanand, V.; Eijsink, V.G.H.; Horn, S.J. Biogas production from the brown seaweed Saccharina latissima: Thermal pretreatment and codigestion with wheat straw. J. Appl. Phycol. 2012, 24, 1295–1301. [Google Scholar] [CrossRef]
- Barbot, Y.N.; Falk, H.M.; Benz, R. Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production—A disposal principle for macroalgae waste from beaches. J. Appl. Phycol. 2015, 27, 601–609. [Google Scholar] [CrossRef]
- Jung, H.; Baek, G.; Kim, J.; Shin, S.G.; Lee, C. Mild-temperature thermochemical pretreatment of greenmacroalgal biomass: Effects on solubilization, methanation, and microbial community structure. Bioresour. Technol. 2016, 199, 326–335. [Google Scholar] [CrossRef]
- Yahmed, N.B.; Carrere, H.; Marzouki, M.N.; Smaali, I. Enhancement of biogas production from Ulva sp. by using solid-state fermentation as biological pretreatment. Algal Res. 2017, 27, 206–214. [Google Scholar] [CrossRef]
- Vanegas, C.H.; Hernon, A.; Bartlett, J. Enzymatic and organic acid pretreatment of seaweed: Effect on reducing sugars production and on biogas inhibition. Int. J. Ambient Energy 2015, 36, 2–7. [Google Scholar] [CrossRef]
- Karray, R.; Hamza, M.; Sayadi, S. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. Bioresour. Technol. 2015, 187, 205–213. [Google Scholar] [CrossRef]
- Park, E.Y.; Park, J.K. Enzymatic saccharification of Laminaria japonica by cellulase for the production of reducing sugars. Energies 2020, 13, 763. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.W.; Kim, D.H.; Shin, H.S. Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour. Technol. 2011, 102, 2745–2750. [Google Scholar] [CrossRef] [PubMed]
- Chades, T.; Scully, S.M.; Lngvadottir, E.M.; Orlygsson, J. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Clostridia. Front. Microbiol. 2018, 9, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Cho, Y.K.; Jeong, G.T.; Kim, S.K. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 2012, 35, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Łukajtis, R.; Kucharska, K.; Hołowacz, I.; Rybarczyk, P.; Wychodnik, K.; Słupek, E.; Nowak, P.; Kaminski, M. Comparison and optimization of saccharification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies 2018, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Foods World 1987, 32, 857–868. [Google Scholar]
- Kim, S.I. Computational Art Therapy, 1st ed.; Charles C Thomas·Publisher: Springfield, IL, USA, 2017; ISBN 9780398091774. [Google Scholar]
- Borines, M.G.; De Leon, R.L.; Cuello, J.L. Bioethanol production from the macroalgae Sargassum spp. Bioresor. Technol. 2013, 138, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Duraisamy, S.; Ramasamy, G.; Kumarasamy, A.; Balakrishan, S. Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production. Biocatal. Agric. Biotechnol. 2018, 14, 444–449. [Google Scholar]
- Lee, S.M. Production of Bio-Ethanol from Brown Algae Using Pretreatment. Master’s Thesis, Department of Biotechnology, Silla University, Busan, Korea, 2010. [Google Scholar]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
Type of Pretreatment/ Used Enzymes or Microorganism | Macroalgae | Pretreatment | Ref. |
---|---|---|---|
Size reduction | Gelidium sesquipedale | Freshwater washed and air-dried Cutting milled then centrifugally (12,000 rpm) milled | [15] |
Laminaria spp. | Ball milled unwashed seaweed, dried at 80 °C for 24 h, Particle size: 1–2 mm | [16] | |
Beating | Laminaria spp. | Cut without washing and beaten (Hollander beater), 76 gap, 15 min | [17] |
Washing | S. muticum | Freshwater washed, frozen (−20 °C), then blended | [18] |
Chaetomorpha linum | Freshwater washed, dried (40 °C, 48 h) milled (25 balls), 18 h, 180 rpm to <2 mm size | [19] | |
Microwave | F. vesiculosus | Cut and grounded (mortar and pestle) microwaved (700 W), 3 min | [20] |
N. zanardini | Washed, dried (40 °C, 24 h); hammer milled to <1 mm 5% seaweed, 121 °C, 0.5 h | [21] | |
Steam explosion | C. linum | Washed, dried (40 °C) and milled 1.2 kg (35% DW, 1.9 MPa), 200 °C, 5 min | [19] |
S. latissima | Defrosted, shredded into slurry steam exploded 130 °C or 160 °C, 10 min | [22] | |
Acidic or alkali treatment | F. vesiculosus | Dried, crushed, homogenised 0.2 M HCl (80 °C, 12 h) | [23] |
Ulva spp. | Fresh water rinsed, blended to slurry. 500 mL slurry, 0.01 M HCl; 0.1 M NaOH | [24] | |
Ulva spp. | Washed, sun dried (1–2 weeks) 0.04 g HCl TS (150 ℃, 0.5 h); 0.04 g NaOH TS (20 °C, 24 h) | [25] | |
Cellulase Alginate lyase Celluclast® 1.5L | L. digitata | Freshwater rinsed, dried (75 °C, 24 h), milled. 20% (w/v) seaweed in water with: Cellulase: 37 °C; Alginate lyase: 37 °C; or Celluclast® 1.5L: 40 °C | [26] |
A. niger with -glucosidase | Ulva rigida | 7.5 mL A. niger filtrate to 50 mL blended seaweed (80% (w/v) in water), 50 °C, 100 rpm, 2 h Repeated with -glucosidase | [27] |
Algae | Speices | Carbohydrate (%) | Protein (%) | Lipid (%) | Reference |
---|---|---|---|---|---|
Brown Algae | Laminaria japonica | 51.9 | 14.8 | 1.8 | [2] |
Laminaria japonica | 59.7 | 9.4 | 2.4 | [29] | |
Laminaria japonica | 77.4 | 4.0 | 0.7 | [30] | |
Saccharina japonica | 66.0 | 10.6 | 1.6 | [31] | |
Saccharina japonica | 66.2 | 9.6 | 1.8 | This Study | |
Mean ± SD | 64.2 ± 9.4 | 9.7 ± 3.9 | 1.7 ± 0.6 |
Variable | Symbol | Coding Level | ||||
---|---|---|---|---|---|---|
−1.682 | −1 | 0 | 1 | 1.682 | ||
Temperature of acid pretreatment (°C) | 113 | 128 | 150 | 172 | 187 | |
Time of acid pretreatment (min) | 12 | 16 | 22 | 28 | 32 | |
HCI concentration (N) | 0.0159 | 0.05 | 0.1 | 0.15 | 0.1841 |
Type | HR-8200 Reactor |
---|---|
Capacity | 100∼2000 cc |
Material | 316SS, Monel400, Titanium, Hastelloy-C276, Inconel, etc. |
Design Pressure | 10∼400 bar |
Design Temperature | AMB∼400 |
Control System | Temperature Controller, RPM Controller & Indicator |
Heating | Electric Band Heater or Jacket Type |
Nozzles | Gas Inlet/Outlet Valve, Pressure Gauge, Pressure Safety Valve, Sampling Valve, Cooling Inlet/Outlet, etc. |
Mixing Type | Magnetic Bar |
No. | Temperature (°C) | Time (m) | C (N) | RS (mg/g) |
---|---|---|---|---|
1 | 128 | 16 | 0.05 | 95.43 |
2 | 172 | 16 | 0.05 | 18.91 |
3 | 128 | 28 | 0.05 | 92.73 |
4 | 172 | 28 | 0.05 | 20.06 |
5 | 128 | 16 | 0.15 | 72.88 |
6 | 172 | 16 | 0.15 | 45.23 |
7 | 128 | 28 | 0.15 | 83.16 |
8 | 172 | 28 | 0.15 | 24.70 |
9 | 113 | 22 | 0.1 | 41.47 |
10 | 187 | 22 | 0.1 | 22.22 |
11 | 150 | 12 | 0.1 | 100.21 |
12 | 150 | 32 | 0.1 | 101.70 |
13 | 150 | 22 | 0.0159 | 24.06 |
14 | 150 | 22 | 0.1841 | 98.35 |
15 | 150 | 22 | 0.1 | 115.56 |
16 | 150 | 22 | 0.1 | 119.54 |
17 | 150 | 22 | 0.1 | 118.54 |
18 | 150 | 22 | 0.1 | 119.46 |
19 | 150 | 22 | 0.1 | 120.56 |
20 | 150 | 22 | 0.1 | 120.37 |
Source | Sum of Squares | DF * | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Regression | 26,604.2 | 9 | 2956.0 | 7.91 | <0.002 | Significant |
5246.7 | 1 | 11,164.3 | 29.86 | 0.000 | Significant | |
6.4 | 1 | 624.7 | 1.67 | 0.225 | ||
1122.3 | 1 | 234.8 | 0.63 | 0.446 | ||
12,561.6 | 1 | 14,625.5 | 39.12 | 0.000 | Significant | |
424.9 | 1 | 801.3 | 2.14 | 0.4174 | ||
6644.6 | 1 | 6644.6 | 17.77 | 0.0002 | Significant | |
90.8 | 1 | 90.8 | 0.24 | 0.633 | ||
497.5 | 1 | 497.5 | 1.33 | 0.276 | ||
9.5 | 1 | 9.5 | 0.03 | 0.877 |
Brown Algae | Sqeuential Hydrolysis | Yields of Reducing Sugar Yield (% w/w Dry Biomass) | Ref. |
---|---|---|---|
Saccharina japonica | HCl (0.108 N, 143.6 °C, 22 min) and 700EGU Celluclast® 1.5 L (8.17 % v/w, 42.6 °C, pH 4.1, 26.4 h) | 18.4% | This study |
Sargassum spp. | HSO (1% w/v, 126 °C, 30 min) and 50FPU Cellulase and 250CBU Cellobiase (50 °C, pH 4.8, 100 rpm 48 h) | 8% | [36] |
Sargassum spp. | HSO (3% w/v, 121 °C, 30 min) and 53FPU Cellulase and 10U Pectinase (50 °C, pH 5, 150 rpm, 4 h) | 11% | [37] |
Sargassum fulvellum | Heat-treatment (121 °C, 30 min) and HCl (0.1 N, 121 °C, 30 min) | 11.7% | [38] |
Laminaria japonica | Heat-treatment (121 °C, 30 min) and HCl (0.1 N, 121 °C, 30 min) | 13.1% | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.-Y.; Park, J.-K. Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass. Energies 2021, 14, 8053. https://doi.org/10.3390/en14238053
Park E-Y, Park J-K. Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass. Energies. 2021; 14(23):8053. https://doi.org/10.3390/en14238053
Chicago/Turabian StylePark, Eun-Young, and Jung-Kyu Park. 2021. "Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass" Energies 14, no. 23: 8053. https://doi.org/10.3390/en14238053
APA StylePark, E. -Y., & Park, J. -K. (2021). Sequential Hydrothermal HCl Pretreatment and Enzymatic Hydrolysis of Saccharina japonica Biomass. Energies, 14(23), 8053. https://doi.org/10.3390/en14238053