Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study
Abstract
:1. Introduction
2. Review of Current Research
3. Materials and Methods
- -
- Charge: flat billets from a COS machine, 220–250 mm thick, 700–2100 mm wide, and 6–11 m long, weighing up to 35 Mg.
- -
- Product: hot-rolled steel strip 1.4–25.4 mm thick, with a width of 750–2100 mm, in coils weighing up to 35 Mg.
- -
- Rolled steels: structural unalloyed steels, including those for the automotive industry (DP) and pipes (X70), high-strength unalloyed steels (HSLA), and silicon steels (GO).
- -
- Using the artificial intelligence method on the basis of an expert system, forecasts of the heating time of the ingots to the desired rolling temperature in the walking beam furnace in its individual zones, along with the corresponding electricity consumption were made.
- -
- A curve for heating and annealing ingots in a walking beam furnace was constructed, on the basis of which a model was built to calculate the energy costs of material processing depending on steel grade and mass, ingot soaking time, thickness, and bandwidth.
- -
- Ways to prevent and reduce environmental impact were identified.
3.1. Forecasting the Heating Time of Flat Billets in a Walking Beam Furnace
- -
- For complex tasks, it is difficult to formulate directly defined, complete and correct algorithms for their solution. This is due to the fact that, as a rule, complex industrial environments are difficult to describe.
- -
- Collections of available data from measurements, observations, documents, etc. are often too large and complicated to search for dependencies and classify them logically.
- -
- Furnace heating time:
- -
- Thickness and width of the strip:
- -
- Strip length in the rolling campaign: l,
- -
- Ingot heating temperature in individual zones: Δh
- -
- Rolling speed: v,
- -
- Average unit pressure in the deformation zone: pśr,
- -
- Rolling moment: Mw,
- -
- Nominal power of the drive motor: Nn,
- -
- Rolling temperature: Tw,
- -
- Random disturbances during rolling: zb.
3.2. Modeling Energy Costs on the Basis of the Heating Curve
3.3. Verification and Validation of the Model in the Dosimis-3 Package
3.4. Ways of Preventing or Reducing the Impact on the Environment
4. Results and Discussion
4.1. Forecasting the Heating Time of Flat Billets in a Walking Beam Furnace
4.2. Modeling Energy Costs on the Basis of the Heating Curve
4.3. Verification and Validation of the Model in the Dosimis-3 Package
- -
- The ingot’s heating time in the furnace, i.e., the time counted from the ingot entering the furnace chamber to the exit to the roller tables for the rolling process. This indicator aims to identify bottlenecks in the system.
- -
- Soaking time, i.e., the time counted from reaching 800 °C by the ingot. According to the algorithm, this indicator makes it possible to control the zones of the furnace according to the heating curve in order to achieve the rolling temperature in an economically optimal manner.
- The simulation shows that the actual technological system in a given rolling mill is designed with a large excess, which results in a sub-optimal use of the furnace capacity, at the level of 74–82%.
- The rolling time is so long that, with the present number of heating zones operating in the furnace, it is difficult to achieve the desired rolling temperature.
- The initial rolling campaign considered during the simulation were completed in less time than the subsequent campaigns. This is because the ingots of later campaigns were blocked in the furnace by waiting for them to move to a different heating zone.
- As shown by the simulation, frequent reconstruction of the rolls increases the residence times of the billets in the furnace in the equalizing zone by an average of 330 min. This is connected with higher production costs. The increase in residence times was demonstrated by the consumption of 3093.75 GJ of gas and 227,700 kWh of electricity during the analyzed 2 month test period and 50 completed rolling campaigns.
- During the performance of the 50 rolling campaigns, the rolling mill lost 2100 min on average for mandatory heating and heating with an incorrect heating curve. Considering that the rolling mill’s efficiency is in the order of 450 Mg/h, and the heat consumption is approx. 1.25 GJ/Mg, it is possible to roll about 15,750 Mg of strip in 2100 min, and gas consumption by heating the billets in the furnace until the completion of the conversion and restarting the rolling process is in the order of 19,687.5 GJ.
- The average duration of a single rolling campaign with the actual technological assumptions prevailing in a given rolling mill and with the use of production aggregates at the level of 60% is approximately 28 h.
- The implementation of 50 campaigns for the actual rolling process demonstrated that the total process of their implementation lasted 1352 h 4 min. During this time, 608,400 Mg of strip was rolled, with the consumption of approximately 760,500 GJ of gas and 55,972,800 kWh of electricity.
4.4. Ways of Preventing or Reducing the Impact on the Environment
5. Conclusions
- The results obtained thanks to the use of artificial intelligence methods prove their effectiveness, and the accuracy of the solution regarding the best forecast of heating times is satisfactory both from the point of view of the needs of production planning as part of planning and long-term activities.
- The comparison of the simulation model with the real model in industrial conditions demonstrated a clear improvement in the technological process, in which there were, among others:
- -
- A reduction in the residence time of the ingots in the furnace.
- -
- A reduction in the duration of a single rolling campaign.
- -
- A reduction in the residence time of the ingots throughout the technological process.
The result of this improvement was the total reduction of the implementation time of the 50 considered rolling campaigns by an average of 25 h and 38 min, thanks to which, among others:- -
- The rolling mill’s efficiency increased by an average of 11,700 Mg tapes.
- -
- There was a significant reduction in the production costs of the final product by saving 14,625 GJ of gas and 1,076,400 kWh of electricity,
- -
- Under the optimization assumptions, the technological aggregates worked at full (100%) production capacity,
- -
- The quality and technological conditions of the obtained tape did not change.
- The implementation of 50 rolling campaigns with the applied improvements in the production system by reducing the heating time of flat slabs was shortened from the actual 58 to 52 days, which in the scale of the full year yields an additional 38 days. During this time, it is possible to:
- -
- Fulfill orders from an additional 36 rolling campaigns.
- -
- Use the additional days obtained for repairs and for the maintenance of production units, without reducing their productivity.
- -
- Save on utilities that can be used to modernize the plant or laboratory tests, which will improve the quality of the steel strip obtained, contributing to an improvement in the position of the plant on the metallurgical products market.
- The benefits of this study include: its determination of the cost and energy relationships between individual profiles and steel grades in active production; the ability to track energy consumption and processing costs, depending on the currently produced assortment; and its verification of market prices for individual grades and profiles of steel.
- The use of BAT techniques in the examined rolling mill for walking-beam furnaces will reduce CO2 emissions by 56.7 thousand tons per year, which will allow a reduction in prices for the purchase of emission permits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAT | Best Available Techniques |
BREF | Best Available Techniques Reference Document |
Thickness of the strip, mm | |
Width of the strip, mm | |
Furnace heating time, min | |
l | Strip length in the rolling campaign, m |
Δh | Ingot heating temperature in individual zones, mm |
v | Rolling speed, m/s |
pśr | Average unit pressure in the deformation zone, MPa |
Mw | Rolling moment, kNm |
Nn | Nominal power of the drive motor, kW |
Tw | Rolling temperature, °C |
L | Number of heating measurements made, no. |
y | Dependent variable |
x1…xk | Independent variables |
β0…βk | Model parameters |
ε | Random component |
EL | Mean error, min |
ΦL | Mean square error |
Gśr | Average natural gas consumption (value equal to 1.29 GJ/Mg obtained From process data), |
ΔL | Ingot length change, m |
Lśr | The average length of the ingot is 9.19 m |
EEi | Electricity consumption depending on the type of material, kWh/Mg |
g | final sheet thickness, mm, |
s | Final width of the sheet, mm |
w | Mass of the ingot, Mg |
Appendix A
h | b | l | Δh | v | pśr | Mw | Nw | Tw | |
---|---|---|---|---|---|---|---|---|---|
656 | 220 | 1100 | 11.0 | 40 | 1.70 | 60.0 | 2100 | 5690 | 1250 |
780 | 180 | 1100 | 13.4 | 40 | 1.80 | 70.0 | 2060 | 5740 | 1225 |
871 | 140 | 1100 | 17.3 | 38 | 2.30 | 70.0 | 2250 | 7990 | 1220 |
953 | 102 | 1100 | 23.7 | 36 | 3.50 | 97.0 | 2380 | 13090 | 1213 |
1005 | 66 | 1100 | 36.7 | 26 | 4.40 | 112.0 | 2425 | 16200 | 1205 |
1060 | 40 | 1100 | 60.5 | 22 | 4.90 | 140.5 | 2280 | 16550 | 1190 |
1135 | 18 | 1100 | 134.4 | 9.9 | 0.80 | 239.5 | 2021 | 3537 | 975 |
1208 | 8.1 | 1100 | 298.8 | 4.3 | 1.80 | 360.6 | 1372 | 5324 | 955 |
1239 | 3.8 | 1100 | 636.8 | 1.7 | 3.85 | 454.0 | 842 | 6913 | 947 |
1268 | 2.1 | 1100 | 1152.4 | 0.6 | 6.99 | 550.0 | 464 | 7048 | 940 |
1288 | 1.5 | 1100 | 1613.3 | 0.4 | 9.81 | 620.0 | 151 | 3885 | 915 |
1310 | 1.2 | 1100 | 2016.7 | 0.2 | 12.27 | 610.5 | 75 | 2428 | 880 |
References
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. On the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA Relevance). Available online: http://data.europa.eu/eli/dir/2009/28/oj (accessed on 10 October 2021).
- Wróblewski, P.; Lewicki, W. A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters. Energies 2021, 14, 6859. [Google Scholar] [CrossRef]
- Wróblewski, P. Analysis of Torque Waveforms in Two-Cylinder Engines for Ultralight Aircraft Propulsion Operating on 0W-8 and 0W-16 Oils at High Thermal Loads Using the Diamond-like Carbon Composite Coating. SAE Int. J. Engines 2022, 45, 2022. [Google Scholar] [CrossRef]
- Wróblewski, P.; Koszalka, G. An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry. SAE Int. J. Engines 2021, 14, 853–866. [Google Scholar] [CrossRef]
- Wróblewski, P. An Innovative Approach to Data Analysis in The Field of Energy Consumption and Energy Conversion Efficiency in Vehicle Drive Systems—The Impact of Operational and Utility Factors. In Proceedings of the 37th International Business Information Management Association (IBIMA), Cordoba, Spain, 1–2 April 2021; ISBN 978-0-9998551-6-4. [Google Scholar]
- Wróblewski, P.; Kupiec, J.; Drożdż, W.; Lewicki, W.; Jaworski, J. The Economic Aspect of Using Different Plug-in Hybrid Driving Techniques in Urban Conditions. Energies 2021, 14, 3543. [Google Scholar] [CrossRef]
- Wróblewski, P.; Drożdż, W.; Lewicki, W.; Miązek, P. Methodology for Assessing the Impact of Aperiodic Phenomena on the Energy Balance of Propulsion Engines in Vehicle Electromobility Systems for Given Areas. Energies 2021, 14, 2314. [Google Scholar] [CrossRef]
- Shahzad, U.; Radulescu, M.; Rahim, S.; Isik, C.; Yousaf, Z.; Ionescu, S. Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies. Energies 2021, 14, 690. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32009L0028 (accessed on 15 October 2021).
- Eurostat Statistics Explained, Electricity Price Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics (accessed on 10 October 2021).
- Janoś, K. Polski Prąd Najdroższy w UE już 7 m-c z Rzędu. Tak Drogo Może być 15 Lat. Available online: https://www.money.pl/gospodarka/polski-prad-najdrozszy-w-ue-juz-7-miesiecy-z-rzedu-tak-drogo-moze-byc-15-lat-6576934583294752a.html (accessed on 10 October 2021).
- Olczak, P.; Matuszewska, D.; Kryzia, D. Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Energy Policy J. 2020, 23, 123–138. Available online: https://epj.min-pan.krakow.pl/-Moj-Prad-as-an-example-of-the-photovoltaic-one-off-grant-program-in-Poland,122482,0,2.html (accessed on 6 October 2021). [CrossRef]
- Benalcazar, P.; Suski, A.; Kamiński, J. The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems. Energies 2020, 13, 955. [Google Scholar] [CrossRef] [Green Version]
- Olczak, P.; Olek, M.; Matuszewska, D.; Dyczko, A.; Mania, T. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland. Energies 2021, 14, 499. [Google Scholar] [CrossRef]
- Kryzia, D.; Kuta, M.; Matuszewska, D.; Olczak, P. Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method. Energies 2020, 13, 3140. [Google Scholar] [CrossRef]
- Matuszewska, D.; Olczak, P. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 2020, 13, 1499. [Google Scholar] [CrossRef] [Green Version]
- SolarPower Europe—Leading the Energy Transition. Available online: https://www.solarpowereurope.org/events2/solarpower-summit-2/ (accessed on 10 October 2021).
- Derski, B. Energetyka w Polsce w 2019 Roku—Moc i Produkcja Energii wg Danych PSE. Available online: https://wysokienapiecie.pl/27524-energetyka-w-polsce-w-2019-roku-moc-produkcja-energii-wg-danych-pse/ (accessed on 6 October 2021).
- Engel, H.; Purta, M.; Speelman, E.; Szarek, G.; van der Pluijm, P. Neutralna Emisyjnie Polska 2050 Jak Wyzwanie Zmienić w Szansę; McKinsey & Company: Warszawa, Poland, 2020. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Höfer, T.; Madlener, R. A participatory stakeholder process for evaluating sustainable energy transition scenarios. Energy Policy 2020, 139, 111277. [Google Scholar] [CrossRef] [Green Version]
- Lei, N.; Masanet, E.; Koomey, J. Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations. Energy Policy 2021, 156, 112422. [Google Scholar] [CrossRef]
- Borowski, P. Adaptation strategy on regulated markets of power companies in Poland. Energy Environ. 2019, 30, 1. [Google Scholar] [CrossRef]
- Kochanek, E. Wielowymiarowość Interesów Energetycznych W Dobie Transformacji Systemowej; WAT: Warsaw, Poland, 2021. [Google Scholar]
- Polityka Energetyczna Polski 2040, Załącznik Do Uchwały Nr 22/2021 Rady Ministrów Z Dnia 2 Lutego 2021 r; Ministerstwo Klimatu i Środowiska: Warsaw, Poland, 2021.
- Niekurzak, M.; Kubińska-Jabcoń, E. Analysis of the return on investment in solar collectors on the example of a household: The case of Poland. Front. Energy Res. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Wnioski Z Analiz Prognostycznych Na Potrzeby Polityki Energetycznej Polski Do 2050 Roku, Załącznik 2; Ministerstwo Klimatu i Środowiska: Warsaw, Poland, 2021.
- Niekurzak, M. The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions. Energies 2021, 14, 7525. [Google Scholar] [CrossRef]
- Gabryś, H. Elektroenergetyka w Polsce 2020. Energetyka 2020, 8, 365–373. [Google Scholar]
- Robaina, M.; Neves, A. Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe. Res. Transp. Econ. 2021, 87, 101074. [Google Scholar] [CrossRef]
- Ecke, J.; Steinert, T.; Bukowski, M.; Śniegocki, A. Polski Sektor Energetyczny 2050, 4 Scenariusze; Forum Energii: Warsaw, Poland, 2018. [Google Scholar]
- Gawlik, L.; Mokrzycki, E. Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package. Energies 2019, 12, 3323. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies in the world. Renew. Sustain. Energy Rev. 2015, 49, 323–334. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Adamczyk, W.; Białecki, R.; Kruczek, T. Retrieving thermal conductivities of isotropic and orthotropic materials. Appl. Math. Model. 2016, 40, 3410–3421. [Google Scholar] [CrossRef]
- Quoilin, S.; Broek, M.V.D.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef] [Green Version]
- Van Essen, V.M.; Zondag, H.A.; Gores, J.; Bleijendaal, L.P.J.; Bakker, M.; Schuitema, R.; Van Helden, W.G.J.; He, Z.; Rindt, C.C.M. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J. Sol. Energy Eng. 2009, 131, 041014. [Google Scholar] [CrossRef]
- Zhang, H.; Baeyens, J.; Cáceres, G.; Degrève, J.; Lv, Y. Thermal energy storage: Recent developments and practical aspects. Prog. Energy Combust. Sci. 2016, 53, 1–40. [Google Scholar] [CrossRef]
- Adamczyk, W.; Białecki, R.; Kruczek, T. Measuring thermal conductivity tensor of orthotropic solid bodies. Measurement 2017, 101, 93–102. [Google Scholar] [CrossRef]
- Adamczyk, W.; Kruczek, T.; Moskal, G.; Białecki, R. Nondestructive technique of measuring heat conductivity of thermal barrier coatings. Int. J. Heat Mass Transf. 2017, 111, 442–450. [Google Scholar] [CrossRef]
- Bodzenta, J.; Kaźmierczak-Bałata, A.; Kruczek, T. Analysis of thermograms based on FFT algorithm. J. Phys. IV 2005, 129, 201–205. [Google Scholar] [CrossRef]
- Bartoszewicz, J.; Kłosowiak, R.; Bogusławski, L. The analysis of the flow structure in a jet at variable geometry of the reverse chamber. Int. J. Heat Mass Transfer 2012, 55, 3239–3245. [Google Scholar] [CrossRef]
- Ciałkowski, M. Sekwencyjna i Globalna Metoda Rozwiązania Zagadnienia Odwrotnego Dla Równania Przewodnictwa Ciepła; XIII Sympozjum Wymiany Ciepła i Masy: Koszalin, Polska, 2007. [Google Scholar]
- Ciałkowski, M.; Grysa, K. A sequential and global method of solving an inverse problem of heat conduction equation. J. Theor. Appl. Mech. 2010, 48, 111–134. [Google Scholar]
- Duda, P.; Taler, J. Numerical method for the solution of non—linear two—dimensional inverse heat conduction problem using unstructured meshes. Int. J. Numer. Meth. Engng. 2020, 48, 881–899. [Google Scholar] [CrossRef]
- Frąckowiak, A.; Botkin, N.D.; Ciałkowski, M.; Hoffmann, K.H. A fitting algorithm for solving inverse problems of heat conduction. Int. J. Heat Mass Transfer 2010, 53, 2123–2127. [Google Scholar] [CrossRef]
- Chen, H.T.; Wu, X.Y. Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme. Int. J. Numer. Meth. Engng. 2008, 73, 107–122. [Google Scholar] [CrossRef]
- Jaremkiewicz, M. Determination of the Transient Fluid Temperature Using Inverse Method—Experimental Verification, Rozdział w Monografii: Modern Energy Technologies, Systems and Units, Pod Redakcją: Jana Talera; Wydawnictwo Politechniki: Krakowskiej, Kraków, Poland, 2013; pp. 83–99. [Google Scholar]
- Joachimiak, M.; Ciałkowski, M.; Bartoszewicz, J. Analysis of temperature distribution in a pipe with inner mineral deposit. Achives Thermodyn. 2014, 35, 37–49. [Google Scholar] [CrossRef]
- Malinowski, Z. Numeryczne Modele W Przeróbce Plastycznej I Wymianie Ciepła; AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne: Kraków, Poland, 2005. [Google Scholar]
- Szecówka, L. (red): Wymiana ciepła w piecach przemysłowych; Wydawnictwo; Politechniki Częstochowskiej: Częstochowa, Poland, 2006. [Google Scholar]
- Rywotycki, M.; Malinowski, Z. Modelowanie Konwekcyjnej Wymiany Ciepła W Procesie Nagrzewania Wsadu W Piecu Pokrocznym; Mat. XV Konferencji Komplatech: Korbielów, Poland, 2008; pp. 137–143. [Google Scholar]
- Kieloch, M. Energooszczędne I Mało Zgorzelinowe Nagrzewanie Wsadu Stalowego. Wydawnictwo Wydziału Inżynierii Procesowej; Materiałowej i Fizyki Stosowanej Politechniki Częstochowskiej: Częstochowa, Poland, 2002. [Google Scholar]
- Telejko, T. Analiza porównawcza wybranych formuł do obliczania przewodności cieplnej stali. Hut. Wiad. Hut. 2001, 11, 418–422. [Google Scholar]
- Malinowski, Z.; Rywotycki, M. Modelowanie nagrzewania pasma w piecach pokrocznych. Hut. Wiad. Hut. 2008, 10, 600–604. [Google Scholar]
- Kubiński, W.; Kubińska-Kaleta, E.; Niekurzak, M. Nowoczesna walcownia taśm stalowych walcowanych na gorąco oraz współczesne kierunki rozwoju procesów ich wytwarzania. Hut. Wiad. Hut. 2010, 7, 333–338. [Google Scholar]
- Talar, J. Komputerowy Model Wspomagania Operacyjnych Decyzji Technologicznych W Walcowni Zimnej; Praca doktorska AGH: Kraków, Poland, 2003. [Google Scholar]
- Niekurzak, M. Zastosowanie Metod Symulacji Do Skrócenia Cyklu Walcowania Taśm Stalowych Z Wykorzystaniem Modelu Zużycia Walców; Praca doktorska AGH: Kraków, Poland, 2012. [Google Scholar]
- Lechwar, S.; Chaieb, S. Statystyczne modelowanie zużycia energii na walcowni gorącej blach w zależności od produkowanego asortymentu. Hut. Wiad. Hut. 2013, 10, 704–711. [Google Scholar]
- Turczyn, S. Inżynieria Wytwarzania Płaskich Wyrobów Walcowanych Na Gorąco; Uczelniane Wydawnictwa Naukowo—Dydaktyczne AGH: Kraków, Poland, 2008. [Google Scholar]
- Walcownia Taśm na Gorąco, Materiały Huty ArcelorMittal Poland. Unpublished work.
h | b | l | Δh | v | pśr | Mw | Nw | Tw | ||
---|---|---|---|---|---|---|---|---|---|---|
1.00 | −0.34 | 0.36 | 0.12 | 0.61 | 0.06 | 0.87 | 0.20 | 0.02 | −0.78 | |
h | −0.34 | 1.00 | −0.45 | −0.09 | −0.12 | 0.34 | 0.36 | 0.03 | 0.34 | −0.23 |
b | 0.36 | −0.45 | 1.00 | 0.62 | 0.36 | 0.58 | 0.23 | 0.48 | −0.24 | 0.36 |
l | 0.12 | −0.09 | 0.62 | 1.00 | 0.78 | −0.12 | −0.45 | 0.12 | −0.45 | −0.12 |
Δh | 0.61 | −0.12 | 0.36 | 0.78 | 1.00 | −0.28 | −0.32 | 0.47 | 0.14 | 0.84 |
v | 0.06 | 0.34 | 0.58 | −0.12 | −0.28 | 1.00 | 0.78 | 0.56 | 0.09 | 0.11 |
pśr | 0.87 | 0.36 | 0.23 | −0.45 | −0.32 | 0.78 | 1.00 | 0.21 | 0.11 | 0.51 |
Mw | 0.20 | 0.03 | 0.48 | 0.12 | 0.47 | 0.56 | −0.21 | 1.00 | −0.27 | −0.65 |
Nn | 0.02 | 0.34 | −0.24 | −0.45 | 0.14 | 0.09 | 0.11 | −0.27 | 1.00 | −0.42 |
Tw | −0.78 | −0.23 | 0.36 | −0.12 | 0.84 | 0.11 | 0.51 | −0.65 | −0.42 | 1.00 |
Mean | Standard Deviation | Average Thickness of the Tape, mm | Average Width of the Tape, mm | Average Weight of the Tape, Mg | Average Electricity Consumption, MWh/Mg |
---|---|---|---|---|---|
2.344 | 1.456 | 1.987 | 0.124 | 0.238 | −0.654 |
1342.221 | 234.232 | 0.234 | 1.876 | 0.654 | −0.762 |
15.562 | 3.345 | 0.321 | 0.908 | 1.000 | −1.234 |
1.234 | 0.123 | −0.765 | −0.654 | −0.834 | 1.000 |
Method | Error EL, min | Mean Square Error ΦL |
---|---|---|
Expert system (ID3) | 122 | 0.17 |
Linear Regression | 155 | 0.83 |
Non-linear regression | 167 | 1.32 |
Zone Number | Location | Torch | Heat Input Zone, kJ/h | ||
---|---|---|---|---|---|
Type | Number | Heat Input Zone, kJ/h | |||
1 | Pre-heating | Side | 14 | 1,800,000 | 25,200,000 |
2 | Top, first heating | Side | 6 | 2,400,000 | 14,400,000 |
3 | Lower, first heating | Side | 6 | 3,000,000 | 18,000,000 |
4 | Top, second heating | Side | 8 | 2,400,000 | 19,200,000 |
5 | Lower, second heating | Side | 8 | 3,000,000 | 24,000,000 |
6 | Upper, third heating | Side | 8 | 2,400,000 | 19,200,000 |
7 | Lower, third heating | Side | 8 | 3,00,0000 | 24,000,000 |
8 | Top, preheat | Radiant vaulted | 32 | 480,000 | 15,360,000 |
9 | Lower, pre-heating | Side | 6 | 3,000,000 | 18,000,000 |
10 | Top right, soaking | Radiant vaulted | 16 | 380,000 | 6,080,000 |
11 | Top left, heating | Radiant vaulted | 16 | 380,000 | 6,080,000 |
12 | Bottom right, soaking | Front | 6 | 1,500,000 | 9,000,000 |
13 | Bottom left, heating | Front | 5 | 1,500,000 | 7,500,000 |
The overall heat capacity of the upper zones | 91,120,000 | ||||
The overall heat capacity of the lower zones | 114,900,000 | ||||
The overall installed thermal power of the furnace | 206,020,000 |
Heating Group Number | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Total heating time minimum, minutes | 100 | 145 | 160 | 180 | 200 | 220 |
Holding time in the equalization zone minimum, minutes | 20 | 25 | 30 | 45 | 50 | 55 |
b > 1500 h ≤ 3.0 | b = 1500–1100 h ≤ 2.0 | b = 1500–1100 h = 2–2.5 | b = 1500–1100 h < 3.0 | b < 1100 h < 3.0 | |
---|---|---|---|---|---|
Energy for heating the charge: | |||||
MJ/t | 1398.89 | 1388.34 | 1360.29 | 1381.06 | 1315.07 |
103 kcal/t | 334.12 | 331.60 | 324.90 | 329.86 | 314.10 |
Electric energy usage, kWh | 117.40 | 117.20 | 114.90 | 116.40 | 113.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niekurzak, M.; Mikulik, J. Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study. Energies 2021, 14, 8099. https://doi.org/10.3390/en14238099
Niekurzak M, Mikulik J. Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study. Energies. 2021; 14(23):8099. https://doi.org/10.3390/en14238099
Chicago/Turabian StyleNiekurzak, Mariusz, and Jerzy Mikulik. 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study" Energies 14, no. 23: 8099. https://doi.org/10.3390/en14238099
APA StyleNiekurzak, M., & Mikulik, J. (2021). Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study. Energies, 14(23), 8099. https://doi.org/10.3390/en14238099