Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Preparation
2.2. Physicochemical Properties of Experimental Soil
2.3. Arsenic Application
2.4. Biochar Preparation, Characterization and Application
2.5. Microwave Soil Heating
2.6. Experiment Setup
2.7. Recording of Agronomic Data
2.8. Grain Total Arsenic Analysis
2.9. Statistical Analysis
3. Results
3.1. Plant Growth and Grain Yield
3.1.1. Leaf Chlorophyll Content (as SPAD Value)
3.1.2. Tiller Number
3.1.3. Shoot Biomass
3.1.4. Spikelet Sterility (%)
3.1.5. Grain Yield
3.2. Grain Total Arsenic Concentration
3.3. Correlation of Plant Growth and Yield Parameter with Grain Total Arsenic Concentration
4. Discussion
4.1. Effect of Soil Arsenic on Plant Growth, Grain Yield and Grain Arsenic Concentration
4.2. Effect of Microwave Soil Treatment on Plant Growth, Grain Yield and Grain Arsenic Concentration
4.3. Effect of Biochar on Plant Growth, Grain Yield and Grain Arsenic Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naidu, R.; Smith, E.; Owens, G.; Bhattacharya, P. Managing Arsenic in the Environment: From Soil to Human Health; CSIRO Publishing: Collingwood, VIC, Australia, 2006. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.; Somanna, Y.; Kim, H. Source, distribution, toxicity and remediation of arsenic in the environment—A review. Int. J. Appl. Environ. Sci. 2016, 11, 559–581. [Google Scholar]
- Gupta, D.K.; Tiwari, S.; Razafindrabe, B.; Chatterjee, S. Arsenic contamination from historical aspects to the present. In Arsenic Contamination in the Environment; Springer: Cham, Switzerland, 2017; pp. 1–12. [Google Scholar]
- Williams, P.N.; Islam, M.; Adomako, E.; Raab, A.; Hossain, S.; Zhu, Y.; Feldmann, J.; Meharg, A.A. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 2006, 40, 4903–4908. [Google Scholar] [CrossRef]
- Upadhyay, M.K.; Shukla, A.; Yadav, P.; Srivastava, S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019, 276, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Shanker, U. Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 2014, 304524. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.; Rahman, G.; Ahmed, Z.; Rahman, M. Spatial Variability of Rice Grain Arsenic in Confined and Unconfined Basins of Ganges River Floodplain Soils of Bangladesh. J. Environ. Sci. Nat. Resour. 2015, 8, 51–55. [Google Scholar] [CrossRef]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef]
- Zavala, Y.J.; Duxbury, J.M. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ. Sci. Technol. 2008, 42, 3856–3860. [Google Scholar] [CrossRef]
- Heikens, A.; Panaullah, G.M.; Meharg, A.A. Arsenic behaviour from groundwater and soil to crops: Impacts on agriculture and food safety. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2007; pp. 43–87. [Google Scholar]
- Banerjee, M.; Banerjee, N.; Bhattacharjee, P.; Mondal, D.; Lythgoe, P.R.; Martínez, M.; Pan, J.; Polya, D.A.; Giri, A.K. High arsenic in rice is associated with elevated genotoxic effects in humans. Sci. Rep. 2013, 3, 2195. [Google Scholar] [CrossRef] [Green Version]
- Arslan, B.; Djamgoz, M.B.; Akün, E. Arsenic: A review on exposure pathways, accumulation, mobility and transmission into the human food chain. In Reviews of Environmental Contamination and Toxicology Volume 243; Springer: Cham, Switzerland, 2016; pp. 27–51. [Google Scholar]
- Ghosh, S.; Debsarkar, A.; Dutta, A. Technology alternatives for decontamination of arsenic-rich groundwater—A critical review. Environ. Technol. Innov. 2019, 13, 277–303. [Google Scholar] [CrossRef]
- Yang, L.; Donahoe, R.J.; Redwine, J.C. In situ chemical fixation of arsenic-contaminated soils: An experimental study. Sci. Total Environ. 2007, 387, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.; Frey, H.; Markey, R.M.; Redwine, J.C.; Navratil, J.D.; Robbins, R.G.; Schreier, C.; Smythe, D.; Sullivan, E.J.; Wickramanayake, G. Arsenic Treatment Technologies for Soil, Waste, and Water; Environmental Protection Agency: Washington, DC, USA, 2002.
- Lim, K.T.; Shukor, M.Y.; Wasoh, H. Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res. Int. 2014, 2014, 503784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, F.-J.; Meharg, A.A.; Raab, A.; Feldmann, J.; McGrath, S.P. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol. 2002, 130, 1552–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, G.; Khan, M.J.; Gupta, D.; Foletta, S.; Bootes, N. Microwave weed and soil treatment in agricultural systems. AMPERE Newsl. 2017, 9–17. Available online: https://www.eng.tau.ac.il/~jerby/AMPERE-Newsletter_website/Papers_PDFs/AMPERE-NL-93_09-17.pdf (accessed on 19 November 2021). [CrossRef]
- Jamal, M.; Brodie, G.; Gupta, D. The effect of microwave soil treatment on rice production under field conditions. Trans. ASABE 2017, 60, 517–525. [Google Scholar]
- Falciglia, P.P.; Bonifacio, A.; Vagliasindi, F.G.A. An Overview on Microwave Heating Application for Hydrocarbon-contaminated Soil and Groundwater Remediation. Oil Gas Res. 2016, 2, 1–6. [Google Scholar]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ayappa, K.G.; Davis, H.T.; Crapiste, G.; Davis, E.A.; Gordon, J. Microwave heating: An evaluation of power formulations. Chem. Eng. Sci. 1991, 46, 1005–1016. [Google Scholar] [CrossRef]
- Falciglia, P.; Vagliasindi, F. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: Technical, energy and economic considerations. Environ. Technol. 2014, 35, 2280–2288. [Google Scholar] [CrossRef]
- Abramovitch, R.A.; ChangQing, L.; Hicks, E.; Sinard, J.J.C. In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere 2003, 53, 1077–1085. [Google Scholar] [CrossRef]
- Chen, C.-L.; Lo, S.-L.; Kuan, W.-H.; Hsieh, C.-H. Stabilization of Cu in acid-extracted industrial sludge using a microwave process. J. Hazard. Mater. 2005, 123, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Lo, S.-L.; Chiueh, P.-T.; Kuan, W.-H.; Chen, C.-L. Microwave enhanced stabilization of heavy metal sludge. J. Hazard. Mater. 2007, 139, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 2013, 20, 358–368. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Tsikouras, B.; Lampropoulou, P.; Kalaitzidis, S.; Hatzipanagiotou, K.; Lambrakis, N.; Christopoulou, M.A. An Experimental Study for the Remediation of Industrial Waste Water Using a Combination of Low Cost Mineral Raw Materials. Minerals 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Vithanage, M.; Herath, I.; Joseph, S.; Bundschuh, J.; Bolan, N.; Ok, Y.S.; Kirkham, M.; Rinklebe, J. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 2017, 113, 219–230. [Google Scholar] [CrossRef]
- Namgay, T.; Singh, B.; Singh, B.P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res. 2010, 48, 638–647. [Google Scholar] [CrossRef]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.-G. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454, 598–603. [Google Scholar] [CrossRef]
- Wang, X.-H.; Chen, H.-P.; Ding, X.-J.; Yang, H.-P.; Zhang, S.-H.; Shen, Y.-Q. Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 2009, 4, 946–959. [Google Scholar]
- Domínguez, A.; Menéndez, J.; Inguanzo, M.; Pis, J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour. Technol. 2006, 97, 1185–1193. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.; Liu, G.; Zhang, H.; Gao, Z.; Fu, J.; He, Y.; Huang, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Downes, R. Soil, land-use, and erosion survey around Dookie, Victoria. CSIRO Aust. Bull. 1949, 243. Available online: http://vro.agriculture.vic.gov.au/dpi/vro/gbbregn.nsf/pages/soil_survey_dookie (accessed on 29 November 2021).
- Isbell, R. The Australian Soil Classification; CSIRO Publishing: Clayton, Australia, 2016. [Google Scholar]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A.; Miah, M. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Samal, A.C.; Santra, S.C. A Greenhouse Pot Experiment to Study Arsenic Accumulation in Rice Varieties Selected from Gangetic Bengal, India. In Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain; Springer: Cham, Switzerland, 2015; pp. 265–274. [Google Scholar]
- Qiao, J.-T.; Liu, T.-X.; Wang, X.-Q.; Li, F.-B.; Lv, Y.-H.; Cui, J.-H.; Zeng, X.-D.; Yuan, Y.-Z.; Liu, C.-P. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 2018, 195, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Chen, Z.; Cai, C.; Tie, B.; Liu, X.; Reid, B.J.; Huang, Q.; Lei, M.; Sun, G.; Baltrėnaitė, E. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—A field experiment in Hunan, China. Environ. Sci. Pollut. Res. 2015, 22, 11097–11108. [Google Scholar] [CrossRef]
- Mamaeva, A.; Tahmasebi, A.; Tian, L.; Yu, J. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour. Technol. 2016, 211, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- ASTM. E1534-93. Standard Test Method for Determination of Ash Content of Particulate Wood Fuels; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass; ASTM: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Sigmund, G.; Hüffer, T.; Hofmann, T.; Kah, M. Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Sci. Total Environ. 2017, 580, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Khan, M.J.; Brodie, G.; Gupta, D. Effect of Microwave (2.45 GHz) Treatment of Soil on Yield Components of Wheat (Triticum aestivum L.). J. Microw. Power Electromagn. Energy 2016, 50, 191–200. [Google Scholar] [CrossRef]
- Cooper, A.; Brodie, G. The Effect of Microwave Radiation and Soil Depth on Soil pH, N, P, K, SO {4} and Bacterial Colonies. Plant Prot. Q. 2009, 24, 67. [Google Scholar]
- Kabir, H.; Khan, M.J.; Brodie, G.; Gupta, D.; Pang, A.; Jacob, M.V.; Antunes, E. Measurement and modelling of soil dielectric properties as a function of soil class and moisture content. J. Microw. Power Electromagn. Energy 2020, 54, 3–18. [Google Scholar] [CrossRef]
- Dunn, B.; Fowler, J.; Garnett, L.; Groat, M.; Mauger, T.; North, S.; Oli, P.; Plunkett, G.; Smith, A.; Stevens, M.; et al. Rice Growing Guide; Department of Primary Industries (DPI): Yanco, NSW, Australia, 2018.
- Azad, M.A.K.; Islam, M.N.; Alam, A.; Mahmud, H.; Islam, M.; Karim, M.R.; Rahman, M. Arsenic uptake and phytotoxicity of T-aman rice (Oryza sativa L.) grown in the As-amended soil of Bangladesh. Environmentalist 2009, 29, 436–440. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Islam, M.N.; Miah, M.M.; Tasmen, A. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 2007, 67, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- P S Analytical. PSA 10.055 Millennium Excalibur Users Manual and PSA Customer Technical Information File; Version 9.4; P S Analytical Ltd.: Orpington, UK, 2009. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- The MathWorks Inc. MATLAB; Version R2015b; The MathWorks Inc.: Natick, MA, USA, 2015. [Google Scholar]
- Asaduzzman, M.; Hossain, M.; Masum, S.M. Effect of Arsenic in Three Wheat Varieties of Bangladesh. Int. J. Bio-Resour. Stress Manag. 2010, 1, 115–120. [Google Scholar]
- Vromman, D.; Lutts, S.; Lefèvre, I.; Somer, L.; De Vreese, O.; Šlejkovec, Z.; Quinet, M. Effects of simultaneous arsenic and iron toxicities on rice (Oryza sativa L.) development, yield-related parameters and As and Fe accumulation in relation to As speciation in the grains. Plant Soil 2013, 371, 199–217. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, N.; Singh, R.; Rai, U. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol. Environ. Saf. 2016, 124, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Panda, P.; Mishra, S.; Dey, M.; Choudhury, S.; Sahoo, L.; Panda, S.K. Arsenic stress in rice: Redox consequences and regulation by iron. Plant Physiol. Biochem. 2014, 80, 203–210. [Google Scholar] [CrossRef]
- Li, X.; Yan, W.; Agrama, H.; Jackson, A.; Jia, M.; Jia, L.; Moldenhauer, K.; Correa, F.; Wu, D. Genetic analysis of genetic basis of a physiological disorder “straighthead” in rice (Oryza sativa L.). Genes Genom. 2016, 38, 453–457. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Gaur, R.; Gupta, M. Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J. Hazard. Mater. 2012, 217, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In Enhancing Cleanup of Environmental Pollutants; Springer: Cham, Switzerland, 2017; pp. 97–140. [Google Scholar]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Banerjee, S.; Santra, S.C. In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India. J. Hazard. Mater. 2013, 262, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Brodie, G.I.; Gupta, D.; Foletta, S. Microwave soil treatment improves weed management in Australian dryland wheat. Trans. ASABE 2018, 61, 671–680. [Google Scholar] [CrossRef]
- Khan, M.J.; Brodie, G. Microwave weed and soil treatment in rice production. Rice Crop. Curr. Dev. 2018, 99–127. [Google Scholar] [CrossRef]
- Gibson, F.; Fox, F.M.; Deacon, J. Effects of microwave treatment of soil on growth of birch (Betula pendula) seedlings and infection of them by ectomycorrhizal fungi. New Phytol. 1988, 108, 189–204. [Google Scholar] [CrossRef]
- Maynaud, G.; Baudoin, E.; Bourillon, J.; Duponnois, R.; Cleyet-Marel, J.C.; Brunel, B. Short-term effect of 915-MHz microwave treatments on soil physicochemical and biological properties. Eur. J. Soil Sci. 2019, 70, 443–453. [Google Scholar] [CrossRef]
- Zhou, B.W.; Shin, S.G.; Hwang, K.; Ahn, J.-H.; Hwang, S. Effect of microwave irradiation on cellular disintegration of Gram positive and negative cells. Appl. Microbiol. Biotechnol. 2010, 87, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Speir, T.; Cowling, J.; Sparling, G.; West, A.; Corderoy, D. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biol. Biochem. 1986, 18, 377–382. [Google Scholar] [CrossRef]
- Anawar, H.M.; Rengel, Z.; Damon, P.; Tibbett, M.J.E.P. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environ. Pollut. 2018, 233, 1003–1012. [Google Scholar] [CrossRef]
- Zhao, F.-J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [Green Version]
- Mosa, K.A.; Kumar, K.; Chhikara, S.; Mcdermott, J.; Liu, Z.; Musante, C.; White, J.C.; Dhankher, O.P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res. 2012, 21, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.L.; DeSutter, T.M.; Casey, F.X.; Khan, E.; Wick, A.F. Thermal remediation alters soil properties—A review. J. Environ. Manag. 2018, 206, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Voort, V.D.M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol. Lett. 2016, 19, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Kim, H.S. Artificial and enhanced humification of soil organic matter using microwave irradiation. Environ. Sci. Pollut. Res. 2013, 20, 2362–2371. [Google Scholar] [CrossRef]
- Hur, J.; Park, S.-W.; Kim, M.C.; Kim, H.S. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter. Chemosphere 2013, 93, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Zagal, E. Effects of microwave radiation on carbon and nitrogen mineralization in soil. Soil Biol. Biochem. 1989, 21, 603–605. [Google Scholar] [CrossRef]
- Taylor, M.; Shuwan, S.A.; Sonal, M.; Priyal, B. Developments in Microwave Chemistry; Evalueserve: Zug, Switzerland, 2005. [Google Scholar]
- Yin, Y.; Impellitteri, C.A.; You, S.-J.; Allen, H.E. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.-L.; Cai, C.; Liang, J.-H.; Huang, Q.; Chen, Z.; Huang, Y.-Z.; Arp, H.P.H.; Sun, G.-X. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 2012, 89, 856–862. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, S.; Qing, H.; Reid, B.J.; Chao, C. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 2014, 105, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef]
- Khan, S.; Waqas, M.; Ding, F.; Shamshad, I.; Arp, H.P.H.; Li, G. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J. Hazard. Mater. 2015, 300, 243–253. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Houben, D.; Sonnet, P.; Cornelis, J.-T. Biochar from Miscanthus: A potential silicon fertilizer. Plant Soil 2014, 374, 871–882. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Kunhikrishnan, A.; Bush, R. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 2016, 144, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y.; Xia, D.; Jiang, X.; Fu, D.; Shen, L.; Wang, H.; Li, Q.B. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J. Hazard. Mater. 2016, 311, 20–29. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, L.; Gao, B.; Xu, X.; Cao, X. The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ. Sci. Technol. 2016, 50, 2264–2271. [Google Scholar] [CrossRef]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.-W. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N.S.; Pei, J.; Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2013, 20, 8472–8483. [Google Scholar] [CrossRef]
- Zhu, N.; Yan, T.; Qiao, J.; Cao, H. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere 2016, 164, 32–40. [Google Scholar] [CrossRef]
- Zhu, N.; Qiao, J.; Ye, Y.; Yan, T. Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column. J. Environ. Manag. 2018, 211, 73–82. [Google Scholar] [CrossRef]
- Kim, H.-B.; Kim, S.-H.; Jeon, E.-K.; Kim, D.-H.; Tsang, D.C.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.; Murphy, D. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ. Pollut. 2009, 157, 2654–2662. [Google Scholar] [CrossRef]
Soil Properties | Analytical Method | Units | Microwave Treatments | ||
---|---|---|---|---|---|
Pre-Treatment | MW-3 | MW-6 | |||
Organic carbon (OC) | Walkley & Black | % | 1.57 | 1.36 | 1.38 |
Organic matter (OM) | Walkley & Black | % | 2.70 | 2.34 | 2.37 |
Electrical conductivity (EC) | Saturated extract | dS/m | 0.80 | 0.90 | 1.60 |
pH | 1:5 CaCl2 | N/A | 6.50 | 6.70 | 6.60 |
Cation exchange capacity (CEC) | BaCl2 exchange | cmol(+)/kg | 9.95 | 10.10 | 10.40 |
Nitrate nitrogen (NO−3-N) | Kjeldahl | mg kg−1 | 39.00 | 33.00 | 36.00 |
Ammonium nitrogen (NH+4-N) | Kjeldahl | mg kg−1 | 7.50 | 44.00 | 160.00 |
Available Potassium (K) | Atomic emission | mg kg−1 | 290.00 | 290.00 | 310.00 |
Sulphur (S) | 0.25M KCl at 40 °C | mg kg−1 | 7.00 | 14.00 | 38.00 |
Phosphorus (P) | Colwell | mg kg−1 | 45.00 | 98.00 | 260.00 |
Calcium (Ca) | Ammonium acetate | cmol(+)/kg | 3.70 | 3.70 | 3.80 |
Magnesium (Mg) | Ammonium acetate | cmol(+)/kg | 4.60 | 4.70 | 5.00 |
Potassium (K) | Ammonium acetate | cmol(+)/kg | 0.75 | 0.75 | 0.80 |
Sodium (Na) | Ammonium acetate | cmol(+)/kg | 0.62 | 0.64 | 0.67 |
Aluminium (Al) | Ammonium acetate | cmol(+)/kg | 0.26 | 0.26 | 0.15 |
Copper (Cu) | DTPA | mg kg−1 | 1.60 | 1.60 | 1.70 |
Zinc (Zn) | DTPA | mg kg−1 | 1.00 | 1.10 | 1.30 |
Manganese (Mn) | DTPA | mg kg−1 | 66.00 | 68.00 | 82.00 |
Iron (Fe) | DTPA | mg kg−1 | 92.00 | 94.00 | 97.00 |
Boron (B) | DTPA | mg kg−1 | 0.90 | 0.89 | 0.93 |
Silicon (Si) | CaCl2 Soluble | mg kg−1 | 75.00 | 81.00 | 100.00 |
Arsenic (As) | HG-AFS | µg kg−1 | <0.01 | <0.01 | <0.01 |
Properties of Biochar | Unit | Value | Method of Determination |
---|---|---|---|
Pyrolysis temperature | °C | 650–700 | FLIR thermal camera |
Residence time | min | 20.00 | – |
Yield | wt. % | 39.33 | [47] |
Ash content | wt. % | 1.34 | Muffle furnace at 600 °C [48] |
Volatile matter | wt. % | 70.32 | Muffle furnace at 500 ± 50 °C [47] |
Dry matter | wt. % | 97.84 | Oven-drying at 110 °C [49] |
Moisture | wt. % | 2.16 | Oven-drying 110 °C [49] |
pH | N/A | 8.47 | 1:5 water, pH meter [50] |
EC | dS m−1 | 0.17 | 1:5 water, EC meter [50] |
Specific surface area | m2 g−1 | 0.05 | BET analysis [51] |
Pore volume | mm3 g−1 | 1.00 | BJH adsorption–desorption [51] |
Pore size | nm | 17.39 | BJH adsorption–desorption [52] |
Soil As (mg kg−1) | Leaf Chlorophyll Content (SPAD Value) | ||
---|---|---|---|
MW Treatments (Minutes) | |||
0 | 3 | 6 | |
0 | 35.11 b,c | 36.63 ab | 36.78 a |
20 | 34.33 c,d | 35.78 abc | 36.42 a,b |
40 | 34.21 c,d | 35.69 abc | 35.66 a–c |
60 | 32.92 d | 34.58 c | 36.49 a,b |
80 | 34.38 c,d | 34.39 cd | 36.44 a,b |
LSD0.05 | 1.64 | ||
Soil As (mg kg−1) | Biochar treatments (t ha−1) | ||
0 | 10 | 20 | |
0 | 36.98 a | 36.54 a,b | 34.99 b−e |
20 | 36.38 a,b | 35.6 a–d | 34.55 c–e |
40 | 35.54 a–d | 35.28 b–d | 34.73 c–e |
60 | 34.12 d,e | 35.86 a–c | 34.00 d,e |
80 | 35.52 a–d | 36.11 a–c | 33.59 e |
LSD0.05 | 1.64 |
Variables | r-Value | ||||||
---|---|---|---|---|---|---|---|
Grain As | Grain Yield | Shoot | Shoot | Tiller Number | Spikelet Sterility | Leaf | |
Concentration | Biomass at T | Biomass at PM | Chlorophyll Content | ||||
Grain As concentration | 1 | ||||||
Grain yield | −0.6176 *** | 1 | |||||
Shoot biomass at T | −0.4572 *** | 0.7184 *** | 1 | ||||
Shoot biomass at PM | −0.5916 *** | 0.8372 *** | 0.6902 *** | 1 | |||
Tiller number | −0.4748 *** | 0.7564 *** | 0.6568 *** | 0.8065 *** | 1 | ||
Spikelet sterility | 0.4463 *** | −0.6523 *** | −0.4182 *** | −0.3826 *** | −0.4412 *** | 1 | |
Leaf chlorophyll content | −0.2325 ** | 0.3406 *** | 0.1939 ** | 0.4013 *** | 0.2383 ** | −0.1048 ns | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.H.; Brodie, G.; Gupta, D.; Pang, A. Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies 2021, 14, 8140. https://doi.org/10.3390/en14238140
Kabir MH, Brodie G, Gupta D, Pang A. Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies. 2021; 14(23):8140. https://doi.org/10.3390/en14238140
Chicago/Turabian StyleKabir, Mohammad Humayun, Graham Brodie, Dorin Gupta, and Alexis Pang. 2021. "Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration" Energies 14, no. 23: 8140. https://doi.org/10.3390/en14238140
APA StyleKabir, M. H., Brodie, G., Gupta, D., & Pang, A. (2021). Microwave Soil Treatment along with Biochar Application Alleviates Arsenic Phytotoxicity and Reduces Rice Grain Arsenic Concentration. Energies, 14(23), 8140. https://doi.org/10.3390/en14238140