Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir
Abstract
:1. Introduction
2. Methods
2.1. Database
2.1.1. Construction of the Geological Models
2.1.2. Numerical Simulation Setup
2.2. Principal of XGBoost Trees
2.3. Construction of the Prediction Model
2.4. Evaluation of the Prediction Model
3. Results and Discussion
3.1. Training and Validation of the Prediction Model
3.2. Verification of the Model with Real CSS Horizontal Wells
3.3. Quantitative Evaluation of the Input Feature Importance
4. Conclusions
- (1)
- The XGBoost model can predict the potential of conformance control by reproducing the underlying correlation between each input feature and oil increment measures. The statistical matrices (MAE, MRE and R2) for N2-foam are 5.25 t, 0.57% and 0.995 for the training set and 45.93 t, 5.01% and 0.901 for the testing set, respectively. The statistical matrices for the gel are 12.37 t, 0.09% and 0.999 for the training set and 80.89 t, 0.059% and 0.944147 for the testing set, respectively. For the two types of plugging agent, the absolute relative errors for most of the data samples are less than 10%, and the maximum relative error is less than 20%.
- (2)
- The input variables in a sequence of decreasing importance to the potential of conformance control for N2-foam, as quantified by the PI, are net to gross>>N2-foam injection>variation coefficient of permeability>oil recovery>steam quality>oil rate>injector temperature>soaking time>porosity>water cut>production rate. While for gel the PI are oil recovery>>net to gross>gel injection>steam quality>variation coefficient of permeability>oil rate>production rate>water cut>injector temperature>porosity>soaking time. Different arrangements of PI are caused by the conformance control mechanism of N2-foam and gel.
- (3)
- The XGBoost model showed excellent performance that predicted the potential of conformance control for three types of real production wells in the Chunfeng oilfield. The maximum absolute error and relative error were 186.49 t and 17.28%, respectively. Comparing with the traditional numerical simulation method, our proposed model reduced the prediction time greatly, with similar prediction accuracy. This method can be applied in actual situations and provide a new view on the design of governance processes after multi-cycle steam stimulation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Xu, C.; Bell, L. Worldwide oil and gas reserves edge up, production down. Oil Gas J. 2020, 12, 14–18. [Google Scholar]
- Dong, X.; Liu, H.; Chen, Z.; Wu, K.; Lu, N.; Zhang, Q. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection. Appl. Energy 2019, 239, 1190–1211. [Google Scholar] [CrossRef]
- Farouq, S.A. Heavy oil—Evermore mobile. J. Pet. Sci. Eng. 2003, 37, 5–9. [Google Scholar]
- Qian, S.; Ertekin, T. Structuring an artificial intelligence based decision making tool for cyclic steam stimulation processes. J. Pet. Sci. Eng. 2017, 154, 564–575. [Google Scholar]
- Zhang, Q.; Liu, H.; Kang, X.; Liu, Y.; Dong, X.; Wang, Y.; Liu, S.; Li, G. An investigation of production performance by cyclic steam stimulation using horizontal well in heavy oil reservoirs. Energy 2021, 218, 119500. [Google Scholar] [CrossRef]
- Catania, P. Predicted and actual productions of horizontal wells in heavy-oil fields. Appl. Energy 2000, 65, 29–43. [Google Scholar] [CrossRef]
- Escobar, E.; Valko, P.; Lee, W.J.; Rodriguez, M.G. Optimization Methodology for Cyclic Steam Injection with Horizontal Wells; Society of Petroleum Engineers SPE/CIM International Conference on Horizontal Well Technology: Calgary, AB, Canada, 2000. [Google Scholar]
- Chang, J. Understanding HW-CSS for Thin Heavy Oil Reservoirs; SPE Heavy Oil Conference-Canada: Calgary, AB, Canada, 2013. [Google Scholar]
- Pang, Z.; Jiang, Y.; Wang, B.; Cheng, G.; Yu, X. Experiments and analysis on development methods for horizontal well cyclic steam stimulation in heavy oil reservoir with edge water. J. Pet. Sci. Eng. 2020, 188, 106948. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Q.; Zhang, X.; Hu, Q.; Wen, S.; Chen, D.; Zhai, Y.; Yan, X. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations. J. Pet. Sci. Eng. 2020, 194, 107488. [Google Scholar] [CrossRef]
- Jha, R.K.; Kumar, M.; Benson, I.P.; Hanzlik, E.J. New Insights into Steam-Solvent Co-injection Process Mechanism. SPE J. 2012, 18, 867–877. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, Z.; Li, B. Experimental study and application of tannin foam for conformance modification in cyclic steam stimulated well. J. Pet. Sci. Eng. 2014, 118, 88–98. [Google Scholar] [CrossRef]
- Speight, J.G. Enhanced Recovery Methods for Heavy Oil and Tar Sands; Elsevier: Gulf Publishing Company: Houston, TX, USA, 2013. [Google Scholar]
- Butler, R.; Yee, C. Progress in the In Situ Recovery of Heavy Oils and Bitumen. J. Can. Pet. Technol. 2002, 41. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, C.; Gu, C.; You, Q.; Sun, Y. Expandable graphite particles as a novel in-depth steam channeling control agent in heavy oil reservoirs. Chem. Eng. J. 2019, 368, 668–677. [Google Scholar] [CrossRef]
- Pang, Z.; Liu, H. The study on permeability reduction during steam injection in unconsolidated porous media. J. Pet. Sci. Eng. 2013, 106, 77–84. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Chen, Y.; Zhao, S.; Bai, B. In Situ Surface Decorated Polymer Microsphere Technology for Enhanced Oil Recovery in High-Temperature Petroleum Reservoirs. Energy Fuels 2018, 32, 3312–3321. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Pang, Z.; Gao, M. Visualization Study on Plugging Characteristics of Temperature-Resistant Gel during Steam Flooding. Energy Fuels 2016, 30, 6968–6976. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, D.; Zhang, Z.; Wang, S.; Wang, Q.; Xia, D. Steam channeling control in the steam flooding of super heavy oil reservoirs, Shengli Oilfield. Pet. Explor. Dev. 2012, 39, 785–790. [Google Scholar] [CrossRef]
- Liang, S.; Hu, S.; Li, J.; Xu, G.; Zhang, B.; Zhao, Y.; Yan, H.; Li, J. Study on EOR method in offshore oilfield: Combination of polymer microspheres flooding and nitrogen foam flooding. J. Pet. Sci. Eng. 2019, 178, 629–639. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Yue, Q.; Gao, Y.; Shen, D. Conformance Control of CSS and Steam Drive Process with a Carbamide Surfactant. J. Can. Pet. Technol. 2009, 48, 16–18. [Google Scholar] [CrossRef]
- Bai, B.; Liu, Y.; Coste, J.-P.; Li, L. Preformed Particle Gel for Conformance Control: Transport Mechanism through Porous Media. SPE Reserv. Eval. Eng. 2007, 10, 176–184. [Google Scholar] [CrossRef] [Green Version]
- El-Karsani, K.S.M.; Al-Muntasheri, G.A.; Hussein, I.A. Polymer Systems for Water Shutoff and Profile Modification: A Review over the Last Decade. SPE J. 2014, 19, 135–149. [Google Scholar] [CrossRef]
- Goudarzi, A.; Zhang, H.; Varavei, A.; Taksaudom, P.; Hu, Y.; Delshad, M.; Bai, B.; Sepehrnoori, K. A laboratory and simulation study of preformed particle gels for water conformance control. Fuel 2015, 140, 502–513. [Google Scholar] [CrossRef]
- Leng, J.; Wei, M.; Bai, B. Review of transport mechanisms and numerical simulation studies of preformed particle gel for conformance control. J. Pet. Sci. Eng. 2021, 206, 109051. [Google Scholar] [CrossRef]
- Abdulbaki, M.; Huh, C.; Sepehrnoori, K.; Delshad, M.; Varavei, A. A critical review on use of polymer microgels for conformance control purposes. J. Pet. Sci. Eng. 2014, 122, 741–753. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, B.; Hou, J. Polymer Gel Systems for Water Management in High-Temperature Petroleum Reservoirs: A Chemical Review. Energy Fuels 2017, 31, 13063–13087. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Wei, Q.; Wu, X.; Bai, B. Terpolymer Gel System Formed by Resorcinol–Hexamethylenetetramine for Water Management in Extremely High-Temperature Reservoirs. Energy Fuels 2017, 31, 1519–1528. [Google Scholar] [CrossRef]
- Ziegler, R. Technology Focus: High-Pressure/High-Temperature Challenges (April 2017). J. Pet. Technol. 2017, 69, 79. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Wang, J.; Hong, C.; Dong, X.; Meng, Q.; Liu, Y. A Novel High-temperature Gel to Control the Steam Channeling in Heavy Oil Reservoir. In Proceedings of the Society of Petroleum Engineers—SPE Heavy Oil Conference Canada, Calgary, AB, Canada, 10–12 June 2014. [Google Scholar]
- Liu, J.; Zhong, L.; Wang, C.; Li, S.; Wang, Q. Investigation of a high temperature gel system for application in saline oil and gas reservoirs for profile modification. J. Pet. Sci. Eng. 2020, 195, 107852. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xue, F.; Wang, Y.; Ren, B.; Zhang, L.; Ren, S. CO2 foam flooding for improved oil recovery: Reservoir simulation models and influencing factors. J. Pet. Sci. Eng. 2015, 133, 838–850. [Google Scholar] [CrossRef]
- Abdelaal, A.; Gajbhiye, R.; Al-Shehri, D. Mixed CO2/N2 Foam for EOR as a Novel Solution for Supercritical CO2 Foam Challenges in Sandstone Reservoirs. ACS Omega 2020, 5, 33140–33150. [Google Scholar] [CrossRef] [PubMed]
- Aarra, M.G.; Skauge, A.; Solbakken, J.; Ormehaug, P.A. Properties of N2- and CO2-foams as a function of pressure. J. Pet. Sci. Eng. 2014, 116, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Farajzadeh, R.; Andrianov, A.; Krastev, R.; Hirasaki, G.; Rossen, W.R. Foam-Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. Adv. Colloid Interface Sci. 2012, 183–184, 1–13. [Google Scholar] [CrossRef]
- Ding, L.; Maklad, M.; Guerillot, D. Revisit of Modeling Techniques for Foam Flow in Porous Media. In Proceedings of the 12th International Exergy, Energy and Environment Symposium (IEEES-12), Doha, Qatar, 20–24 December 2020. [Google Scholar]
- Sander, P.; Clark, G.; Lau, E.C. Steam-Foam Diversion Process Developed to Overcome Steam Override in Athabasca. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA,, 6–9 October 1991. [Google Scholar]
- Pang, Z.; Liu, H.; Zhu, L. A laboratory study of enhancing heavy oil recovery with steam flooding by adding nitrogen foams. J. Pet. Sci. Eng. 2015, 128, 184–193. [Google Scholar] [CrossRef]
- Sun, L.; Wei, P.; Pu, W.; Wang, B.; Wu, Y.; Tan, T. The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments. J. Pet. Sci. Eng. 2016, 147, 485–494. [Google Scholar] [CrossRef]
- De Haas, T.W.; Bao, B.; Ramirez, H.A.; Abedini, A.; Sinton, D. Screening High-Temperature Foams with Microfluidics for Thermal Recovery Processes. Energy Fuels 2021, 35, 7866–7873. [Google Scholar] [CrossRef]
- Duan, X.; Hou, J.; Cheng, T.; Li, S.; Ma, Y. Evaluation of oil-tolerant foam for enhanced oil recovery: Laboratory study of a system of oil-tolerant foaming agents. J. Pet. Sci. Eng. 2014, 122, 428–438. [Google Scholar] [CrossRef]
- Talebian, S.H.; Tan, I.M.; Sagir, M.; Muhammad, M. Static and dynamic foam/oil interactions: Potential of CO2-philic surfactants as mobility control agents. J. Pet. Sci. Eng. 2015, 135, 118–126. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Zhang, J.; Feng, Q.; Zhang, X.; Hu, Q.; Yang, J.; Wang, N. A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China. Energies 2020, 13, 5369. [Google Scholar] [CrossRef]
- Niroomand-Toomaj, E.; Etemadi, A.; Shokrollahi, A. Radial basis function modeling approach to prognosticate the interfacial tension CO2/Aquifer Brine. J. Mol. Liq. 2017, 238, 540–544. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, Q.; Zhang, X.; Shu, C.; Wang, S.; Wu, K. A Supervised Learning Approach for Accurate Modeling of CO2–Brine Interfacial Tension with Application in Identifying the Optimum Sequestration Depth in Saline Aquifers. Energy Fuels 2020, 34, 7353–7362. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Shang, L.; Feng, Q.; Gong, L.; Wu, K. A unified intelligent model for estimating the (gas + n-alkane) interfacial tension based on the eXtreme gradient boosting (XGBoost) trees. Fuel 2020, 282, 118783. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Xi, W. Microbial enhanced oil recovery of oil-water transitional zone in thin-shallow extra heavy oil reservoirs: A case study of Chunfeng Oilfield in western margin of Junggar Basin, NW China. Pet. Explor. Dev. 2016, 43, 689–694. [Google Scholar] [CrossRef]
- Rafnuss. Sequential Gaussian Simulation (SGS), GitHub. Available online: https://github.com/Rafnuss-PhD/SGS (accessed on 1 July 2021).
- Wang, Y.; Ren, S.; Zhang, L.; Peng, X.; Pei, S.; Cui, G.; Liu, Y. Numerical study of air assisted cyclic steam stimulation process for heavy oil reservoirs: Recovery performance and energy efficiency analysis. Fuel 2018, 211, 471–483. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Liu, P.; Zhou, Y.; Qi, Z.; Shi, L.; Xi, C.; Zhang, Z.; Wang, C.; Hua, D. Experimental and numerical investigation on extra-heavy oil recovery by steam injection using vertical injector -horizontal producer. J. Pet. Sci. Eng. 2021, 205, 108945. [Google Scholar] [CrossRef]
- Sharoh, G.; Marquez, S.; Mohamed, O.; Almarshed, A. Delineation of most efficient recovery technique for typical heavy oil reservoir in the middle east region through compositional simulation of temperature-dependent relative permeabilities. J. Pet. Sci. Eng. 2020, 186, 106725. [Google Scholar]
- CMG. STARS User’s Guide; Computer Modeling Group Ltd.: Calgary, AB, Canada, 2015. [Google Scholar]
- Vinsome, P.; Westerveld, J. A Simple Method for Predicting Cap and Base Rock Heat Losses In’ Thermal Reservoir Simulators. J. Can. Pet. Technol. 1980, 19, PETSOC-80-03-04. [Google Scholar] [CrossRef]
- Dheiaa, A.; Alameedy, U. Factors affecting gel strength design for conformance control: An integrated investigation. J. Pet. Sci. Eng. 2021, 204, 108711. [Google Scholar]
- Herbas, J.; Moreno, R.; Romero, M.F.; Coombe, D.; Serna, A. Gel Performance Simulations and Laboratory/Field Studies to Design Water Conformance Treatments in Eastern Venezuelan HPHT Reservoirs. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar]
- Scott, T.; Roberts, L.; Sharp, S.; Clifford, P.; Sorbie, K. In-Situ Gel Calculations in Complex Reservoir Systems Using a New Chemical Flood Simulator. SPE Reserv. Eng. 1987, 2, 634–646. [Google Scholar] [CrossRef]
- Strebelle, S.; Journel, A. Reservoir Modeling Using Multiple-Point Statistics. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2001. [Google Scholar]
- Kular, G.; Lowe, K.; Coombe, D. Foam Application in an Oil Sands Steamflood Process. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–11 October 1989. [Google Scholar]
- Kirmani, F.U.; Raza, A.; Gholami, R.; Haidar, M.Z.; Fareed, C.S. Analyzing the effect of steam quality and injection temperature on the performance of steam flooding. Energy Geoscience. Energy Geosci. 2021, 2, 83–86. [Google Scholar] [CrossRef]
- Priscilla, C.V.; Prabha, P. Influence of Optimizing XGBoost to handle Class Imbalance in Credit Card Fraud Detection. In Proceedings of the IEEE International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020. [Google Scholar]
- Qin, C.; Zhang, Y.; Bao, F.; Zhang, C.; Liu, P.; Liu, P. XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring. Math. Probl. Eng. 2021, 2021, 6655510. [Google Scholar] [CrossRef]
- Wang, M.-X.; Huang, D.; Wang, G.; Li, D.-Q. SS-XGBoost: A Machine Learning Framework for Predicting Newmark Sliding Displacements of Slopes. J. Geotech. Geoenviron. Eng. 2020, 146, 04020074. [Google Scholar] [CrossRef]
- Mo, H.; Sun, H.; Liu, J.; Wei, S. Developing window behavior models for residential buildings using XGBoost algorithm. Energy Build. 2019, 205, 109564. [Google Scholar] [CrossRef]
- Liu, W.; Gu, J. Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method. J. Pet. Sci. Eng. 2020, 188, 106937. [Google Scholar] [CrossRef]
- Chung, Y.-S. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2013, 61, 107–118. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ding, C.; Cao, X.J.; Næss, P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo. Transp. Res. Part. A Policy Pract. 2018, 110, 107–117. [Google Scholar] [CrossRef]
- Lim, S.; Chi, S. Xgboost application on bridge management systems for proactive damage prediction. Adv. Eng. Inform. 2019, 41, 100922. [Google Scholar] [CrossRef]
- Lee, Y.; Ragguett, R.M.; Mansur, R.B.; Boutilier, J.J.; Rosenblat, J.D.; Trevizol, A.; Brietzke, E.; Lin, K.; Pan, Z.; Subramaniapillai, M.; et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J. Affect. Disord. 2018, 241, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liao, W.; Nuyttens, D.; Lootens, P.; Vangeyte, J.; Pižurica, A.; He, Y.; Pieters, J.G. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 43–53. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, C.; Li, Y.; Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. 2017, 78, 225–241. [Google Scholar] [CrossRef]
- Tao, H.; Habib, M.; Aljarah, I.; Faris, H.; Afan, H.A.; Yaseen, Z.M. An intelligent evolutionary extreme gradient boosting algorithm development for modeling scour depths under submerged weir. Inf. Sci. 2021, 570, 172–184. [Google Scholar] [CrossRef]
- Ye, Z.J.; Schuller, B.W. Capturing dynamics of post-earnings-announcement drift using a genetic algorithm-optimized XGBoost. Expert Syst. Appl. 2021, 177, 114892. [Google Scholar] [CrossRef]
- Feng, G.; Li, Y.; Yang, Z. Performance evaluation of nitrogen-assisted steam flooding process in heavy oil reservoir via numerical simulation. J. Pet. Sci. Eng. 2020, 189, 106954. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, H.; Pang, Z.; Sun, Z. Visualized study of thermochemistry assisted steam flooding to improve oil recovery in heavy oil reservoir with glass micromodels. Fuel 2018, 218, 118–126. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Mariethoz, G. A general parallelization strategy for random path based geostatistical simulation methods. Comput. Geosci. 2010, 36, 953–958. [Google Scholar] [CrossRef]
Property | Minimum Value | Max Value |
---|---|---|
Depth (m) | 500 | 700 |
Thickness (m) | 3 | 6 |
Porosity | 0.18 | 0.41 |
Permeability (mD) | 340 | 14,200 |
Formation temperature (°C) | 28 | 36 |
Formation pressure (MPa) | 5.7 | 6.1 |
Viscosity at 34 °C (mPa·s) | 55,000 | 57,211 |
Parameter | Value |
---|---|
Reservoir rock thermal conductivity (J/m·day·C) | 1.634 × 105 |
Water phase thermal conductivity (J/m·day·C) | 5.99 × 104 |
Oil phase thermal conductivity (J/m·day·C) | 9.77 × 103 |
Gas phase thermal conductivity (J/m·day·C) | 1.9 × 103 |
Volumetric heat capacity of over-/under-burden rock (J/m3·C) | 2.575 × 106 |
Thermal conductivity of over-/under-burden rock (J/m·day·C) | 1.055 × 105 |
Thermal expansion coefficient | 1 × 10−6 |
Parameter Types | Parameter Name | Minimum Value | Maximum Value |
---|---|---|---|
Geologic parameters | Top depth (m) | 509.91 | 592.81 |
Porosity | 0.29 | 0.36 | |
Net to gross | 0.36 | 0.80 | |
Permeability (mD) | 4217.06 | 6747.66 | |
Variation coefficient of permeability | 0.12 | 0.36 | |
Operation parameters for cyclic steam stimulation | Steam quality | 0 | 1 |
Steam injection temperature (°C) | 270 | 350 | |
Soak time (d) | 2 | 7 | |
Cumulative injection of plugging agent (PV) | 0.2 | 0.8 | |
Conformance control timing | Production rate (t/d) | 25 | 40 |
Water cut (%) | 60 | 95 | |
Oil rate (t/d) | 3.49 | 18.83 | |
Oil recovery (%) | 2.38 | 7.58 |
Hyperparameter | Description | Range |
---|---|---|
LR | Learning rate used for preventing over-fitting | 0.01, 0.05, 0.10, 0.15, 0.2 |
n | The number of independent trees that form the ensemble | 1000, 1500, 2000, 2500, 3000 |
MTD | The maximum number of edges from the leaf to the root node | 2, 3, 4, 5, 6 |
MCW | The minimum sum of weights of all observations required in a child | 1, 3, 5, 7, 9 |
γ | The minimum loss reduction term required to further split a leaf | 0 |
Subsample | The ratio of observations for sampling to construct each tree | 1 |
Column sample by tree | The ratio of columns for sampling to construct each tree | 1 |
α | L1 regularization term on weights that is similar to lasso regression | 0 |
λ | L2 regularization term on weights that is similar to ridge regression | 1 |
No. | MTD | LR | MCW | n | Average R2 |
---|---|---|---|---|---|
1 | 3 | 0.01 | 7 | 3000 | 0.971 |
2 | 3 | 0.01 | 7 | 2500 | 0.970 |
3 | 3 | 0.01 | 7 | 2000 | 0.970 |
4 | 3 | 0.01 | 7 | 1500 | 0.969 |
5 | 3 | 0.05 | 7 | 1000 | 0.968 |
Matrices | N2-Foam | Gel | |
---|---|---|---|
Training set | MAE, t | 5.25 | 12.37 |
MRE, % | 0.57 | 0.09 | |
R2, fraction | 0.995 | 0.999 | |
Testing set | MAE, t | 45.93 | 80.89 |
MRE, % | 5.01 | 0.059 | |
R2, fraction | 0.901 | 0.944 | |
Whole set | MAE, t | 21.41 | 26.07 |
MRE, % | 2.6 | 0.019 | |
R2, fraction | 0.967 | 0.988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Feng, Q.; Zhang, J.; Shao, X.; Zhang, X.; Wang, Z. Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir. Energies 2021, 14, 8161. https://doi.org/10.3390/en14238161
Xie Z, Feng Q, Zhang J, Shao X, Zhang X, Wang Z. Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir. Energies. 2021; 14(23):8161. https://doi.org/10.3390/en14238161
Chicago/Turabian StyleXie, Zehao, Qihong Feng, Jiyuan Zhang, Xiaoxuan Shao, Xianmin Zhang, and Zenglin Wang. 2021. "Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir" Energies 14, no. 23: 8161. https://doi.org/10.3390/en14238161
APA StyleXie, Z., Feng, Q., Zhang, J., Shao, X., Zhang, X., & Wang, Z. (2021). Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir. Energies, 14(23), 8161. https://doi.org/10.3390/en14238161