Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis
Abstract
:1. Introduction
2. Experimental Apparatus and Procedure
3. Experimental Results and Discussion
3.1. Biomass Pyrolysis-Induced Composition Changes
3.2. Cl Emissions from the Pyrolysis with N2 Atmosphere
3.3. Cl Emissions from the Pyrolysis with Flue Gas Atmosphere
3.4. Chlorine Distribution after Pyrolysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- BP Energy Outlook 2019 Edition. 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf (accessed on 14 October 2021).
- U.S. Energy Information Administration. U.S. Energy Facts. 2019. Available online: https://www.eia.gov/energyexplained/us-energy-facts/ (accessed on 14 October 2021).
- Clean Energy Wire, Significant Drop in Energy Use Pushes Down German Emissions in 2018. 2019. Available online: https://www.cleanenergywire.org/news/significant-drop-energy-use-pushes-down-german-emissions-2018 (accessed on 14 October 2021).
- Climate Scepticism, Climate Change—The Lies, Propaganda, Misinformation, Disinformation and Emotional Blackmail. Part IV. 2019. Available online: https://cliscep.com/2019/04/26/climate-change-the-lies-propaganda-misinformation-disinformation-and-emotional-blackmail-part-iv/ (accessed on 14 October 2021).
- Van den Broek, R.; Faaij, A.; Van Wijk, A. Biomass combustion for power generation. Biomass Bioenergy 1996, 11, 271–281. [Google Scholar] [CrossRef]
- Van Loo, S.; Koppejan, J. Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008. [Google Scholar]
- Khan, A.A.; De Jong, W.; Jansens, P.J. Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Sondreal, E.A.; Benson, S.A.; Hurley, J.P.; MannJohn, M.D.; Pavlish, J.H.; Swanson, M.L.; Weber, G.; Zygarlicke, C.J. Review of advances in combustion technology and biomass cofiring. Fuel Process. Technol. 2001, 71, 7–38. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossaina, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Nussbaumer, T. Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C. Biomass pyrolysis technology: Techno-economic status and future prospects. Energy 2013, 62, 196–214. [Google Scholar] [CrossRef]
- Ren, X.; Sun, R.; Meng, X.; Vorobiev, N.; Schiemann, M.; Levendis, Y.A. Carbon, Sulfur and Nitrogen Oxide Emissions from Combustion of Pulverized Raw and Torrefied Biomass. Fuel 2017, 188, 310–323. [Google Scholar] [CrossRef]
- Ren, X.; Sun, R.; Chi, H.; Meng, X.; Li, Y.; Levendis, Y.A. Hydrogen chloride emissions from combustion of raw and torrefied biomass. Fuel 2017, 200, 37–46. [Google Scholar] [CrossRef]
- Jensen, P.A.; Sander, B.; Dam-Johansen, K. Removal of K and Cl by leaching of straw char. Biomass Bioenergy 2001, 20, 447–457. [Google Scholar] [CrossRef]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of pyrolysis, fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass pyrolysis, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Feng, D.D.; Guo, D.W.; Shang, Q.; Zhao, Y.J.; Zhang, L.Y.; Guo, X.; Cheng, J.; Chang, G.Z.; Guo, Q.J.; Sun, S.Z. Mechanism of biochar-gas-tar-soot formation during pyrolysis of different biomass feedstocks: Effect of inherent metal species. Fuel 2021, 293, 120409–120419. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 2014, 40, 153–160. [Google Scholar] [CrossRef]
- Quan, C.; Gao, N. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms. BioMed Res. Int. 2016, 2016, 6197867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuthaluru, H.B. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol. 2004, 85, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Kastanaki, E.; Vamvuka, D.; Grammelis, P.; Kakaras, E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Process. Technol. 2002, 77–78, 159–166. [Google Scholar] [CrossRef]
- Pan, Y.G.; Velo, E.; Puigjaner, L. Pyrolysis of blends of biomass with poor coals. Fuel 1996, 75, 412–418. [Google Scholar] [CrossRef]
- Aboyade, A.O.; Gorgens, J.F.; Carrier, M.; Meyer, E.L.; Knoetze, J.H. Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues. Fuel Process. Technol. 2013, 106, 310–320. [Google Scholar] [CrossRef]
- Ulloa, C.A.; Gordon, A.L.; Garcia, X.A. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Process. Technol. 2009, 90, 583–590. [Google Scholar] [CrossRef]
- Song, Y.; Tahmasebi, A.; Yu, J. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Bioresour. Technol. 2014, 174, 204–211. [Google Scholar] [CrossRef]
- Chen, C.; Ma, X.; He, Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour. Technol. 2012, 117, 264–273. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel 2007, 86, 373–380. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, C.; Xu, J.; Zhang, W. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor. Bioresour. Technol. 2014, 173, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sonobe, T.; Worasuwannarak, N.; Pipatmanomai, S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol. 2008, 89, 1371–1378. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Zhao, W.; Liu, S. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel 2007, 86, 353–359. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour. Technol. 2010, 101, 6151–6156. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.D.; Zhao, Y.J.; Zhang, Y.; Xu, H.H.; Zhang, L.Y.; Sun, S.Z. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel 2018, 212, 523–532. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Wang, L.; Liu, A.; Yu, G. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresour. Technol. 2013, 148, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Dai, Z.H.; Zhou, Z.J.; Chen, X.L.; Yu, G.S.; Wang, F.C. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Bioresour. Technol. 2012, 109, 188–197. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zhao, J.; Chen, L.; Meng, H. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresour. Technol. 2014, 169, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Barbier-Brygoo, H.; Vinauger, M.; Colcombet, J.; Ephritikhine, G.; Frachisse, J.M.; Maurel, C. Anion channels in higher plants: Functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 2000, 1465, 199–218. [Google Scholar] [CrossRef]
- Thomas, R.; Miles, J.R.; Larry, L. Bioler deposits from firing Biomass fuels. Biomass Bioenergy 1996, 10, 125–138. [Google Scholar]
- Tillman, D.A.; Duong, D.; Miller, B. Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers Sources, Forms, Reactions, and Consequences: A Literature Review. Energy Fuels 2009, 23, 3379–3391. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Eskenazy, G.M.; Vassileva, C.G. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 2000, 79, 903–921. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 27–144. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Aho, M.; Ferrer, E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass. Fuel 2005, 84, 201–212. [Google Scholar] [CrossRef]
- McIlveen-Wright, D.R.; Huang, Y.; Rezvani, S.; Wang, Y. A technical and environmental analysis of co-combustion of coal and biomass in fluidised bed technologies. Fuel 2007, 86, 2032–2042. [Google Scholar] [CrossRef]
- Ren, X.; Rokni, E.; Zhang, L.; Wang, Z.; Liu, Y.; Levendis, Y.A. Use of Alkali Carbonate Sorbents for Capturing Chlorine-Bearing Gases from Corn Straw Pyrolysis. Energy Fuels 2018, 32, 11843–11851. [Google Scholar] [CrossRef]
- Shemwell, B.; Levendis, Y.A.; Simons, G.A. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents. Chemosphere 2001, 42, 785–796. [Google Scholar] [CrossRef]
- Ren, X.; Rokni, E.; Liu, Y.; Levendis, Y.A. Reduction of HCl Emissions from Combustion of Biomass by Alkali Carbonate Sorbents or by Thermal Pretreatment. J. Energy Eng. 2018, 144, 04018045. [Google Scholar] [CrossRef]
- Björkman, E.; Strömberg, B. Release of chlorine from biomass at pyrolysis and gasification conditions. Energy Fuels 1997, 11, 1026–1032. [Google Scholar] [CrossRef]
- Keipi, T.; Tolvanen, H.; Kokko, L.; Raiko, R. The effect of pyrolysis on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy 2014, 66, 232–239. [Google Scholar] [CrossRef]
- Toptas, A.; Yildirim, Y.; Duman, G.; Yanik, J. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresour. Technol. 2015, 177, 328–336. [Google Scholar] [CrossRef]
- Shang, L.; Ahrenfeldt, J.; Holm, J.K.; Barsberg, S.; Zhang, R.; Luo, Y.; Egsgaard, H.; Henriksen, U.B. Intrinsic kinetics and devolatilization of wheat straw during pyrolysis. J. Anal. Appl. Pyrolysis 2013, 100, 145–152. [Google Scholar] [CrossRef]
- Ren, X.; Rokni, E.; Sun, R.; Meng, X.; Levendis, Y.A. Evolution of Chlorine-Bearing Gases during Corn Straw Pyrolysis at Different Temperatures. Energy Fuels 2017, 31, 13713–13723. [Google Scholar] [CrossRef]
- Jensen, P.A.; Frandsen, F.J.; Dam-Johansen, K.; Sander, B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuels 2000, 14, 1280–1285. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Liu, Y.; Ren, X.; Chen, J.; Levnedis, Y.A. Sulfur and Nitrogen Release from Co-Pyrolysis of Coal and Biomass under Oxidative and Non-Oxidative Conditions. J. Energy Resour. Technol. 2021, 143, 061304. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Li, Y.; Zhu, Z.; Xu, H.; Chen, J.; Ren, X. Release of Sulfur and Nitrogen during Co-pyrolysis of Coal and Biomass under Inert Atmosphere. ACS Omega 2020, 5, 30001–30010. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Test Method 321—Measurement of Gaseous Hydrogen Chloride Emissions at Portland Cement Kilns by Fourier Transform Infrared (Ftir) Spectroscopy. 2016. Available online: https://www.epa.gov/sites/production/files/2016-07/documents/m-321.pdf (accessed on 21 November 2021).
- Saleh, S.B.; Flensborg, J.P.; Shoulaifar, T.K.; Sárossy, Z.; Hansen, B.B.; Egsgaard, H.; DeNartini, N.; Jensen, P.A.; Glarborg, P.; Dam-Johansen, K. Release of chlorine and sulfur during biomass torrefaction and pyrolysis. Energy Fuels 2014, 28, 3738–3746. [Google Scholar] [CrossRef]
- Zintl, F.; Strömberg, B.; Björkman, E. Release of Chlorine from Biomass at Gasification Conditions. In Proceedings of the 10th European Conference and Technology Exhibition Biomass for Energy and Industry Proceedings of the International Conference, Wurzburg, Germany, 8–11 June 1998; CARMEN: Rimpar, Germany, 1998. [Google Scholar]
- Liu, Y.; Rokni, E.; Yang, R.; Ren, X.; Sun, R.; Levendis, Y.A. Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel 2021, 285, 119044. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef] [Green Version]
- Johansen, J.M.; Aho, M.; Paakkinen, K.; Taipale, R.; Egsgaard, H.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds. Proc. Combust. Inst. 2013, 34, 2363–2372. [Google Scholar] [CrossRef]
Samples | Proximate Analysis (wt%) | Ultimate Analysis (wt%, daf) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | C | H | S | N | Cl | |
Lignite | 3.01 | 34.90 | 3.31 | 58.78 | 73.30 | 4.10 | 0.18 | 1.19 | 0.06 |
Corn straw | 7.40 | 80.92 | 2.52 | 9.16 | 42.86 | 6.66 | 0.32 | 0.83 | 0.75 |
Mixture | 5.21 | 57.91 | 2.92 | 33.97 | 58.08 | 5.38 | 0.25 | 1.01 | 0.41 |
Fuel Type | Atmosphere | Temperature | ||||||
---|---|---|---|---|---|---|---|---|
300 °C | 400 °C | 500 °C | 600 °C | 700 °C | 800 °C | 900 °C | ||
Corn straw | N2 | 57.51 | 63.62 | 66.18 | 69.49 | 71.14 | 71.88 | 72.94 |
5% O2 | 48.69 | 58.88 | 72.13 | 76.68 | 77.66 | 82.00 | 85.91 | |
Lignite | N2 | 4.43 | 18.04 | 22.03 | 27.23 | 30.74 | 33.24 | 34.52 |
5% O2 | 8.09 | 23.82 | 29.13 | 32.78 | 35.37 | 37.20 | 44.39 | |
Coal and biomass | N2 | 29.50 | 41.68 | 46.02 | 47.90 | 51.20 | 53.33 | 54.94 |
5% O2 | 29.75 | 41.55 | 46.89 | 51.35 | 52.58 | 55.51 | 62.11 |
Fuel Type | Temperature | Cl Content in Sample (%) | ClHCl/Cltotal (%) | Clash/Cltotal (%) | Clrest,gas/Cltotal (%) |
---|---|---|---|---|---|
Corn straw | Original | 0.75 | - | - | - |
300 °C | 0.28 | 23.22 | 15.64 | 61.14 | |
500 °C | 0.19 | 45.91 | 8.53 | 45.56 | |
700 °C | 0.16 | 36.06 | 6.23 | 57.71 | |
Lignite | Original | 0.06 | - | - | - |
300 °C | 0.04 | 7.23 | 71.36 | 21.41 | |
500 °C | 0.01 | 64.76 | 10.87 | 24.37 | |
700 °C | 0.01 | 38.31 | 13.46 | 48.23 | |
Mixture of corn straw and lignite | Original | 0.41 | - | - | - |
300 °C | 0.34 | 10.32 | 59.31 | 30.37 | |
500 °C | 0.32 | 14.91 | 43.26 | 41.83 | |
700 °C | 0.31 | 9.86 | 37.16 | 52.98 |
Fuel Type | Temperature | Cl Content in Ash (%) | Cl (%) Released as HCl | Cl (%) Retained in Ash | Rest Cl (%) in Gas |
---|---|---|---|---|---|
Corn straw | Original | 0.75 | - | - | - |
300 °C | 0.15 | 23.72 | 10.22 | 66.06 | |
500 °C | 0.09 | 90.33 | 3.51 | 6.16 | |
700 °C | 0.12 | 0.75 | 3.69 | 95.56 | |
Lignite | Original | 0.06 | - | - | - |
300 °C | 0.03 | 36.12 | 44.75 | 19.13 | |
500 °C | 0.01 | 61.97 | 8.29 | 29.74 | |
700 °C | 0.01 | 60.05 | 11.05 | 28.90 | |
Coal and biomass | Original | 0.41 | - | - | - |
300 °C | 0.32 | 14.64 | 55.28 | 30.08 | |
500 °C | 0.27 | 32.50 | 35.29 | 32.21 | |
700 °C | 0.25 | 0.24 | 29.43 | 70.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Xie, M.; Xu, L.; Zhang, L.; Ren, X. Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis. Energies 2021, 14, 8227. https://doi.org/10.3390/en14248227
Cheng J, Xie M, Xu L, Zhang L, Ren X. Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis. Energies. 2021; 14(24):8227. https://doi.org/10.3390/en14248227
Chicago/Turabian StyleCheng, Jian, Min Xie, Li Xu, Lei Zhang, and Xiaohan Ren. 2021. "Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis" Energies 14, no. 24: 8227. https://doi.org/10.3390/en14248227
APA StyleCheng, J., Xie, M., Xu, L., Zhang, L., & Ren, X. (2021). Chlorine Release from Co-Pyrolysis of Corn Straw and Lignite in Nitrogen and Oxidative Pyrolysis. Energies, 14(24), 8227. https://doi.org/10.3390/en14248227