Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids
Abstract
:1. Introduction
Proposed Contributions
2. Materials and Methods
2.1. Methodology Overview
2.2. Case Study Building
2.3. Preparation to Implement Modelling Tool
3. Results
3.1. Implementation of Methodology
3.1.1. Define Scope (Step 1)
3.1.2. Asset Identification (Step 2)
3.1.3. Asset Categorisation (Step 3)
3.1.4. Risk Assessment and Analysis (Step 4)
3.1.5. Modelling AHU Participation (Step 5)
3.1.6. Final Implementation (Step 6)
3.2. Impact and Scaling Potential
3.2.1. Scaling Scenarios
3.2.2. Scaling Results
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
# | Date (dd/mmm/yy) | Start Time (hh:mm:ss) | Duration (s) | Trigger Frequency (Hz) | Frequency Range (Hz) | Frequency Event | AHU ON |
---|---|---|---|---|---|---|---|
1 | 4/January/2019 | 05:57:09 | 2 | 49.714 | 49.714–49.719 | N | N |
2 | 22/January/2019 | 20:23:26 | 7 | 49.718 | 49.616–49.737 | Y | N |
3 | 22/January/2019 | 20:23:46 | 3 | 49.746 | 49.746–49.746 | N | N |
4 | 26/January/2019 | 11:25:08 | 1 | 49.727 | “ | N | Y |
5 | 2/March/2019 | 00:13:02 | 3 | 49.735 | 49.635–49.735 | Y | N |
6 | 3/March/2019 | 06:12:59 | 111 | 49.703 | 49.662–49.749 | Y | Y |
7 | 20/March/2019 | 16:46:16 | 4 | 49.672 | 49.574–49.706 | Y | Y |
8 | 2/April/2019 | 13:35:46 | 1 | 49.748 | “ | N | Y |
9 | 2/April/2019 | 17:43:43 | 2 | 49.743 | 49.742–49.743 | N | Y |
10 | 24/April/2019 | 15:21:07 | 5 | 49.702 | 49.608–49.711 | Y | Y |
11 | 8/May/2019 | 09:14:23 | 7 | 49.655 | 49.576–49.721 | Y | Y |
12 | 20/May/2019 | 14:54:12 | 226 | 49.743 | 49.542–49.749 | Y | Y |
13 | 20/May/2019 | 15:24:52 | 6 | 49.725 | “ | N | Y |
14 | 11/July/2019 | 07:53:37 | 5 | 49.696 | 49.632–49.743 | Y | Y |
15 | 24/July/2019 | 15:50:09 | 1 | 49.744 | “ | N | Y |
16 | 24/July/2019 | 20:52:11 | 2 | 49.730 | 49.729–49.732 | N | N |
17 | 7/October/2019 | 08:14:21 | 70 | 49.735 | 49.703–49.748 | N | Y |
18 | 7/October/2019 | 08:15:44 | 2 | 49.749 | 49.748–49.749 | N | Y |
19 | 7/October/2019 | 08:15:54 | 12 | 49.746 | 49.742–49.748 | N | Y |
20 | 7/October/2019 | 08:16:10 | 4 | 49.748 | 49.747–49.748 | N | Y |
21 | 7/October/2019 | 08:16:17 | 6 | 49.748 | 49.742–49.749 | N | Y |
22 | 7/October/2019 | 08:16:41 | 2 | 49.748 | 49.748–49.749 | N | Y |
23 | 31/October/2019 | 02:06:36 | 2 | 49.693 | 49.693–49.697 | Y | N |
24 | 25/November/2019 | 21:11:47 | 2 | 49.748 | 49.741–49.748 | N | N |
25 | 26/November/2019 | 07:39:30 | 1 | 49.721 | “ | N | Y |
26 | 17/January/2020 | 18:24:50 | 5 | 49.655 | 49.615–49.703 | Y | N |
27 | 31/January/2020 | 13:03:34 | 2 | 49.714 | 49.714–49.749 | N | Y |
28 | 7/February/2020 | 10:37:06 | 2 | 49.737 | 49.720–49.737 | N | Y |
29 | 25/March/2020 | 11:17:05 | 5 | 49.747 | 49.747–49.747 | N | Y |
30 | 7/April/2020 | 21:04:05 | 5 | 49.747 | 49.747–49.747 | N | N |
31 | 12/May/2020 | 01:17:05 | 5 | 49.738 | 49.738–49.738 | N | N |
32 | 18/June/2020 | 19:07:55 | 10 | 49.593 | 49.593–49.671 | Y | N |
33 | 1/July/2020 | 15:29:25 | 5 | 49.734 | 49.734–49.734 | N | Y |
34 | 19/July/2020 | 06:26:35 | 45 | 49.599 | 49.599–49.748 | Y | Y |
35 | 21/August/2020 | 15:20:15 | 5 | 49.708 | 49.708–49.708 | N | Y |
36 | 23/September/2020 | 11:02:15 | 5 | 49.531 | 49.531–49.531 | Y | Y |
References
- Sustainable Energy Authority of Ireland. Renewable Energy in Ireland; SEAI: Dublin, Ireland, 2020. [Google Scholar]
- Sustainable Energy Authority of Ireland. Energy in Ireland—2020 Report; SEAI: Dublin, Ireland, 2020. [Google Scholar]
- Carlini, E.M.; Schroeder, R.; Birkebæk, J.M.; Massaro, F. EU transition in power sector How RES affects the design and operations of transmission power systems. Electr. Power Syst. Res. 2019, 169, 74–91. [Google Scholar] [CrossRef]
- EirGrid Group. Industry Guide to the I-SEM; EirGrid: Dublin, Ireland, 2017. [Google Scholar]
- EirGrid Group. Frequency: All Island. Available online: http://smartgriddashboard.eirgrid.com/#all/frequency (accessed on 9 October 2021).
- Raidió Teilifís Éireann. Tánaiste “Reasonably Confident” There Will Not Be Blackouts This Winter; RTÉ News: Dublin, Ireland, 2021. [Google Scholar]
- Newbery, D. Tales of two islands—Lessons for EU energy policy from electricity market reforms in Britain and Ireland. Energy Policy 2017, 105, 597–607. [Google Scholar] [CrossRef]
- Commission for Regulation of Utilities (CRU). Electricity Security of Supply Report 2018; CRU: Dublin, Ireland, 2018. [Google Scholar]
- EirGrid; SONI. DS3 System Services Protocol—Regulated Arrangements; EirGrid: Dublin, Ireland, 2019. [Google Scholar]
- Gu, C.; Zhang, Y.; Wang, J.; Li, Q. Joint planning of electrical storage and gas storage in power-gas distribution network considering high-penetration electric vehicle and gas vehicle. Appl. Energy 2021, 301, 117447. [Google Scholar] [CrossRef]
- Hooshmand, R.A.; Nosratabadi, S.M.; Gholipour, E. Event-based scheduling of industrial technical virtual power plant considering wind and market prices stochastic behaviors—A case study in Iran. J. Clean. Prod. 2018, 172, 1748–1764. [Google Scholar] [CrossRef]
- EirGrid; SONI. All-Island Generation Capacity Statement 2020–2029; EirGrid: Dublin, Ireland, 2020. [Google Scholar]
- EirGrid. Tomorrow’s Energy Scenarios 2019 Ireland; EirGrid: Dublin, Ireland, 2019. [Google Scholar]
- Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Ibrahimi, A.M.; Senjyu, T. Harnessing demand-side management benefit towards achieving a 100% renewable energy microgrid. Energy Rep. 2020, 6, 680–685. [Google Scholar] [CrossRef]
- Oikonomou, K.; Parvania, M.; Khatami, R. Coordinated deliverable energy flexibility and regulation capacity of distribution networks. Int. J. Electr. Power Energy Syst. 2020, 123, 106219. [Google Scholar] [CrossRef]
- Brem, A.; Adrita, M.M.; O’Sullivan, D.T.J.; Bruton, K. Industrial smart and micro grid systems—A systematic mapping study. J. Clean. Prod. 2020, 244, 118828. [Google Scholar] [CrossRef]
- Sustainable Energy Authority of Ireland. Large Industry Energy Network. Available online: https://www.seai.ie/energy-in-business/lien/ (accessed on 11 October 2021).
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Thavlov, A.; Bindner, H.W. Utilization of Flexible Demand in a Virtual Power Plant Set-Up. IEEE Trans. Smart Grid 2015, 6, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Michaud, G. Deploying solar energy with community choice aggregation: A carbon fee model. Electr. J. 2018, 31, 32–38. [Google Scholar] [CrossRef]
- Rogers, A.P.; Rasmussen, B.P. Opportunities for consumer-driven load shifting in commercial and industrial buildings. Sustain. Energy Grids Netw. 2018, 16, 243–258. [Google Scholar] [CrossRef]
- Heydt, G.T. Implementation of smart grid objectives among distribution system residential, commercial, and industrial loads. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Zhang, Q.; Grossmann, I.E. Enterprise-wide optimization for industrial demand side management: Fundamentals, advances, and perspectives. Chem. Eng. Res. Des. 2016, 116, 114–131. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.; Bahramara, S.; Khayat, Y.; Bevrani, H. Optimal planning in a developing industrial microgrid with sensitive loads. Energy Rep. 2017, 3, 124–134. [Google Scholar] [CrossRef]
- Royapoor, M.; Pazhoohesh, M.; Davison, P.J.; Patsios, C.; Walker, S. Building as a virtual power plant, magnitude and persistence of deferrable loads and human comfort implications. Energy Build. 2020, 213, 109794. [Google Scholar] [CrossRef]
- Rodríguez-García, J.; Álvarez-Bel, C.; Carbonell-Carretero, J.-F.F.; Escrivá-Escrivá, G.; Calpe-Esteve, C. Design and validation of a methodology for standardizing prequalification of industrial demand response resources. Electr. Power Syst. Res. 2018, 164, 220–229. [Google Scholar] [CrossRef]
- Viotas Fully Managed Demand Response. Available online: https://viotas.com/solutions/solutions-demand-response/ (accessed on 8 November 2021).
- Grid Beyond. Working Together. Available online: https://gridbeyond.com/ (accessed on 8 November 2021).
- Pechmann, A.; Shrouf, F.; Chonin, M.; Steenhusen, N. Load-shifting potential at SMEs manufacturing sites: A methodology and case study. Renew. Sustain. Energy Rev. 2017, 78, 431–438. [Google Scholar] [CrossRef]
- Choobineh, M.; Mohagheghi, S. A multi-objective optimization framework for energy and asset management in an industrial Microgrid. J. Clean. Prod. 2016, 139, 1326–1338. [Google Scholar] [CrossRef]
- Brem, A.; Cusack, D.Ó.; Adrita, M.M.; O’Sullivan, D.T.J.; Bruton, K. How do companies certified to ISO 50001 and ISO 14001 perform in LEED and BREEAM assessments? Energy Effic. 2020, 13, 751–766. [Google Scholar] [CrossRef]
- Maussion, P. Design of Experiments in electrical engineering: Applications in control and modeling. In Proceedings of the 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 20–21 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 179–186. [Google Scholar]
- Miki, K.; Saito, A.; Nakashima, T.; Murakami, Y.; Kimura, T.; Nishibuchi, I.; Nagata, Y. Evaluation of optimization workflow using design of experiment (DoE) for various field configurations in volumetric-modulated arc therapy. Phys. Med. 2018, 54, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.D.S.; Saviano, A.M.; Lourenço, F.R. Design of Experiments (DoE) applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, 1–16. [Google Scholar] [CrossRef]
- Bahraminasab, M.; Jahan, A.; Sahari, B.; Arumugam, M.; Shamsborhan, M.; Hassan, M.R. Using Design of Experiments Methods for Assessing Peak Contact Pressure to Material Properties of Soft Tissue in Human Knee. J. Med. Eng. 2013, 2013, 891759. [Google Scholar] [CrossRef]
- Griffiths, C.A.; Howarth, J.; De Almeida-Rowbotham, G.; Rees, A.; Kerton, R. A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing. J. Clean. Prod. 2016, 139, 74–85. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 31000 Risk Management—Guidelines; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- International Organization for Standardization. Risk Management—Risk Assessment Techniques; ISO: Dublin, Ireland, 2010. [Google Scholar]
- Chemweno, P.; Pintelon, L.; Muchiri, P.N.; Van Horenbeek, A. Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches. Reliab. Eng. Syst. Saf. 2018, 173, 64–77. [Google Scholar] [CrossRef]
- Passath, T.; Mertens, K. Decision Making in Lean Smart Maintenance: Criticality Analysis as a Support Tool. IFAC-PapersOnLine 2019, 52, 364–369. [Google Scholar] [CrossRef]
- Jaderi, F.; Ibrahim, Z.Z.; Zahiri, M.R. Criticality analysis of petrochemical assets using risk based maintenance and the fuzzy inference system. Process Saf. Environ. Prot. 2019, 121, 312–325. [Google Scholar] [CrossRef]
- Jaderi, F.; Ibrahim, Z.Z.; Jaafarzadeh, N.; Abdullah, R.; Yavari, A.R.; Shamsudin, M.N.; Nabavi, S.M.B. Criticality analysis using risk assessment-based maintenance of a petrochemical company. Pol. J. Environ. Stud. 2014, 23, 2033–2037. [Google Scholar]
- Martínez-Galán, P.; Gómez, J.F.; Crespo, A.; Guillén, A.; de la Fuente, A.; Candón, E. Criticality Analysis for Network Utilities Asset Management. IFAC-PapersOnLine 2019, 52, 2074–2079. [Google Scholar] [CrossRef]
- Melani, A.H.A.; Murad, C.A.; Caminada Netto, A.; de Souza, G.F.M.; Nabeta, S.I. Criticality-based maintenance of a coal-fired power plant. Energy 2018, 147, 767–781. [Google Scholar] [CrossRef]
- SIEMENS. Totally Integrated Power—Industrial Plants—Applications for Electric Power Distribution; SIEMENS: Munich, Germany, 2021. [Google Scholar]
- ABB. ABB Delivers Cost-Efficient Load-Shedding Solution to Glencane Bioenergia. Available online: https://new.abb.com/news/detail/53056/abb-delivers-cost-efficient-load-shedding-solution-to-glencane-bioenergia (accessed on 22 November 2021).
- Blake, S.T.; O’Sullivan, D.T.J. Optimization of Distributed Energy Resources in an Industrial Microgrid. Procedia CIRP 2018, 67, 104–109. [Google Scholar] [CrossRef]
- Dababneh, F.; Li, L.; Sun, Z. Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics. Int. J. Prod. Econ. 2016, 177, 44–52. [Google Scholar] [CrossRef]
- Yin, R.; Kara, E.C.; Li, Y.; DeForest, N.; Wang, K.; Yong, T.; Stadler, M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl. Energy 2016, 177, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, Z.; Xu, P.; Li, W.; Sha, H.; Yang, Z.; Li, G.; Hu, C. Quantification of electricity flexibility in demand response: Office building case study. Energy 2019, 188, 116054. [Google Scholar] [CrossRef]
- Amin, U.; Hossain, M.J.; Fernandez, E. Optimal price based control of HVAC systems in multizone office buildings for demand response. J. Clean. Prod. 2020, 270, 122059. [Google Scholar] [CrossRef]
- Brem, A.; Bruton, K.; O’Sullivan, P.D. Assessing the Risk to Indoor Thermal Environments on Industrial Sites Offering AHU Capacity for Demand Response. Energies 2021, 14, 6261. [Google Scholar] [CrossRef]
- Willumsen, P.; Oehmen, J.; Stingl, V.; Geraldi, J. Value creation through project risk management. Int. J. Proj. Manag. 2019, 37, 731–749. [Google Scholar] [CrossRef] [Green Version]
- Leimeister, M.; Kolios, A. A review of reliability-based methods for risk analysis and their application in the offshore wind industry. Renew. Sustain. Energy Rev. 2018, 91, 1065–1076. [Google Scholar] [CrossRef]
- EirGrid; SONI. DS3 System Services Protocol—Regulated Arrangements 3.0; EirGrid: Dublin, Ireland, 2020. [Google Scholar]
- Schoen, L.J.; Alspach, P.F.; Arens, E.A.; Aynsley, R.M.; Bean, R.; Eddy, J.; Int-Hout, D.; Khalil, E.E.; Simmonds, P.; Stoops, J.L.; et al. ANSI/ASHRAE Standard 55-2013—Thermal Environmental Conditions for Human Occupancy; ASHRAE: Peachtree Corners, GA, USA, 2013. [Google Scholar]
- Electricity Supply Board. Generation Asset Map. Available online: https://esb.ie/our-businesses/generation-energy-trading-new/generation-asset-map (accessed on 15 September 2021).
- Environmental Protection Agency (EPA). Waste License; EPA: Washington, DC, USA, 2011. [Google Scholar]
- Statkraft Ireland Ltd. Batteries. Available online: https://www.statkraft.ie/what-we-do/Grid-Services-and-Batteries/ (accessed on 15 September 2021).
- EirGrid; SONI. DS3 System Services Statement of Payments; EirGrid: Dublin, Ireland, 2018. [Google Scholar]
- Baxtel. Republic of Ireland Data Center Market. Available online: https://baxtel.com/data-center/republic-of-ireland (accessed on 4 October 2021).
- EirGrid; SONI. DS3 System Services Scalar Design—Recommendations Paper; EirGrid: Dublin, Ireland, 2017. [Google Scholar]
Model | Sector | Software | Accuracy | DR | Risk |
---|---|---|---|---|---|
CHP [47] | Industrial | Matlab | R2 = 0.94 | - | - |
AHU 1 [48] | Industrial | General Algebraic Modelling | - | - | - |
AHU 2 [49] | Residential/Commercial | EnergyPlus | R2 = 0.54–0.78 and 0.39–0.81 | Y | Y |
AHU 3 [50] | Commercial | Dymola (Modelica) | RMSE = 0.48 °C | Y | Y |
AHU 4 [51] | Commercial | Simulink (Matlab) | - | Y | Y |
Selected Approach [52] | Industrial | Python | RMSE = 0.3 °C R2 = 0.49 | Y | Y |
Categorisation Level | Description |
---|---|
1 | Large reliable capacity, negligible to no impact on the end use and suitable access to warrant inclusion |
2 | Meets all criteria but capacity not large enough to warrant inclusion at this time |
3 | May be included once minor change to process/SOP, cost or location/complexity occurs |
4 | Not included unless major change to process/SOP, cost or location/complexity occurs |
5 | Do not meet any of the criteria and would not be suitable |
Date (dd/mmm/yy) | Start Time (hh:mm:ss) | Duration (s) | Trigger Frequency (Hz) | Frequency Range (Hz) | Tmin (°C) | Time (hh:mm) | Tmean (°C) | Tmax (°C) | Time (hh:mm) |
---|---|---|---|---|---|---|---|---|---|
3/March/2019 | 06:12:59 | 111 | 49.703 | 49.662–49.749 | 4.08 | 02:45 | 7.83 | 11.61 | 14:45 |
20/March/2019 | 16:46:16 | 4 | 49.672 | 49.574–49.706 | 4.63 | 01:30 | 11.28 | 20.44 | 14:30 |
24/April/2019 | 15:21:07 | 5 | 49.702 | 49.608–49.711 | 10.19 | 03:15 | 13.61 | 21.7 | 16:00 |
8/May/2019 | 09:14:23 | 7 | 49.655 | 49.576–49.721 | 6.88 | 04:30 | 10.34 | 16.55 | 12:15 |
20/May/2019 | 14:54:12 | 226 | 49.743 | 49.542–49.749 | 8.26 | 23:45 | 13.22 | 21.38 | 18:15 |
11/July/2019 | 07:53:37 | 5 | 49.696 | 49.632–49.743 | 12.51 | 01:00 | 16.50 | 22.08 | 11:15 |
19/July/2020 | 06:26:35 | 45 | 49.599 | 49.599–49.748 | 6.63 | 23:45 | 16.82 | 30.7 | 16:30 |
23/September/2020 | 11:02:15 | 5 | 49.531 | 49.531–49.531 | 9.48 | 23:45 | 13.21 | 18.12 | 15:00 |
Actual Grid Frequency Events | Evaluation Criteria | |||
---|---|---|---|---|
Date (dd/mmm/yy) | Shutoff Time (hh:mm:ss) | Shutoff Duration (s) | Thermal Comfort Threshold (°C) | Potential Shutoff Durations (mins) |
3/March/2019 | 06:12:59 | 111 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
20/March/2019 | 16:46:16 | 4 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
24/April/2019 | 15:21:07 | 5 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
8/May/2019 | 09:14:23 | 7 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
20/May/2019 | 14:54:12 | 226 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
11/July/2019 | 07:53:37 | 5 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
19/July/2020 | 06:26:35 | 45 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
23/September/2020 | 11:02:15 | 5 | 20–23 | 5, 10, 15, 20, 30, 45, 60 |
Categorisation Level | Description | Asset Example |
---|---|---|
1 | Large reliable capacity, negligible to no impact on the end use and suitable access to warrant inclusion | Selected AHUs, CHP Unit |
2 | Meets all criteria but capacity not large enough to warrant inclusion at this time | Extraction Fans, Pumps |
3 | May be included once minor change to process/SOP, cost or location/complexity occurs | Remaining AHUs, Compressors, Chillers |
4 | Not included unless major change to process/SOP, cost or location/complexity occurs | Production Equipment, Humidifiers, Lighting |
5 | Do not meet any of the criteria and would not be suitable | Emergency Equipment |
Asset | Safety | Environment | Operational | Detectability | RPN |
---|---|---|---|---|---|
AHU 1 | 1 | 2 | 1 | 1 | 2 |
AHU 2 | 1 | 2 | 1 | 1 | 2 |
AHU 3 | 1 | 2 | 1 | 1 | 2 |
AHU 4 | 1 | 2 | 1 | 1 | 2 |
AHU 5 | 1 | 2 | 1 | 1 | 2 |
CHP | 2 | 2 | 1 | 1 | 4 |
Grouping | CLHG | Cork Area | LIEN 1 | LIEN 2 |
---|---|---|---|---|
Potential Companies | DePuy Synthes, Thermo Fischer, Janssen Biologics, Novartis | Ringaskiddy (DePuy Synthes, Hovione, Thermo Fischer, Novartis, Janssen Biologics, Pfizer) Carrigtwohill (Gilead Sciences, Stryker, AbbVie, GE Healthcare, Merck) Little Island (PepsiCo, Janssen Pharma, Pfizer) Model Farm Road (Boston Scientific, Stryker) | Pharma/Chem (43) and Healthcare (26) | All Companies |
Companies | 4 | 16 | 69 | 199 |
Grouping | Single Site (kW) | CLHG (kW) | Cork Area (kW) | LIEN 1 (kW) | LIEN 2 (kW) |
---|---|---|---|---|---|
Low Potential | 35 | 140 | 560 | 2415 | 6965 |
High Potential | 75 | 300 | 1200 | 5175 | 14,925 |
DS3 System Service Category | Delivery Time (s) | Low Potential—35 kW (EUR) | High Potential—75 kW (EUR) |
---|---|---|---|
Fast Frequency Response (FFR) | 2–10 | 662 | 1419 |
Primary Operating Reserve (POR) | 5–15 | 993 | 2129 |
Secondary Operating Reserve (SOR) | 15–90 | 601 | 1288 |
Tertiary Operating Reserve 1 (TOR1) | 90–300 | 475 | 1018 |
Tertiary Operating Reserve 2 (TOR2) | 300–1200 | 380 | 815 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brem, A.; O’Sullivan, D.T.J.; Bruton, K. Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids. Energies 2021, 14, 8261. https://doi.org/10.3390/en14248261
Brem A, O’Sullivan DTJ, Bruton K. Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids. Energies. 2021; 14(24):8261. https://doi.org/10.3390/en14248261
Chicago/Turabian StyleBrem, Alexander, Dominic T. J. O’Sullivan, and Ken Bruton. 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids" Energies 14, no. 24: 8261. https://doi.org/10.3390/en14248261
APA StyleBrem, A., O’Sullivan, D. T. J., & Bruton, K. (2021). Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids. Energies, 14(24), 8261. https://doi.org/10.3390/en14248261