Analysis of Water-Cooled Intercooler Thermal Characteristics
Abstract
:1. Introduction
2. Governing Equation
3. Performance Analysis of Water-Cooled Intercooler Unit
4. Overall Performance Analysis of Water-Cooled Intercooler
4.1. Flow Field Analysis of Water-Cooled Intercooler
4.2. Analysis of Temperature Field Uniformity of Water-Cooled Intercooler
5. Comparative Analysis of Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
j | Colburn factor |
f | Friction factor |
T | Temperature (K) |
D | Hydraulic diameter (m) |
∆P | Pressure difference (Pa) |
fp | Pressure loss coefficient |
m | Mass flow (kg/s) |
cp | Constant-pressures pecific heat (J/(kg°C)) |
k | Heat transfer coefficient |
Re | Reynolds number |
Pr | Prandtl number |
Nu | Nusselt number |
De | Equivalent diameter |
ρ | Density (kg/m3) |
µ | Dynamic viscosity (N·s/m2) |
λ | Thermal conductivity (W/(m°C)) |
σ | Variance of basis function |
Ґ | Diffusion coefficient |
u | Velocity |
Cr | Heat capacity ratio |
NTU | Number of heat transfer units |
UAmin | Flow velocity of the minimum flow area |
l | Flow channel length |
b | Friction index |
A | Flow channel section area |
C2 | Inertial resistance coefficient |
a−1 | Viscous resistance coefficient |
References
- Chi, C.W.; Kuan, Y.C. Heat Transfers and Friction Characteristics of Plain Fin and Tube Heat Exchangers, Part I: New Exchangers in Wet Conditions. Heat Mass Transf. 2000, 43, 3443–3452. [Google Scholar]
- Cristian, C.; Danielle, M.; Philippe, N. Thermo-hydraulic Characterization of An Automotive Intercooler for a Low Pressure EGR Application. Appl. Therm. Eng. 2011, 31, 2474–2484. [Google Scholar]
- Dong, W.; Wen, C.-Z.; Zheng, P.Y. Numerical Simulation of Intercooler Flow Path for Marine Gas Turbine. J. Aerosp. Power 2010, 25, 636–640. [Google Scholar]
- Ying, Y.L.; Cao, Y.P.; Li, S.Y. Study on Flow Parameters Optimisation for Marine Gas Turbine Intercooler System Based on Simulation Experiment. Int. J. Comput. Appl. Technol. 2013, 47, 56. [Google Scholar] [CrossRef]
- Wen, C.Z.; Dong, W. Numerical Simulation of Heat Transfer and Fluid Flow on Marine Gas Turbine Intercooler. J. Aerosp. Power 2010, 25, 654–658. [Google Scholar]
- Wu, H.; Dai, X.; Zhang, Y. Research of Intercooler Heat Transfer Based on CFD. In Proceedings of the 13th International Conference on Emerging Learning Technologies and Applications, High Tatras, Slovakia, 26–27 November 2015. [Google Scholar]
- Yuan, Y.; Jackson, A.; Nelson, M. CFD Simulation of Flow and Heat Transfer in Airways. Sae Tech. Pap. 2001, 1, 68–72. [Google Scholar]
- Song, R.; Cui, M. Single- and multi-objective optimization of a plate-fin heat exchanger with offset strip fins adopting the genetic algorithm. Appl. Therm. Eng. 2019, 159, 113881. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Yang, Y.; Zhu, Y.; Wen, J. Effect of surface efficiency on the thermal design of plate-fin heat exchangers with passages stack arrangement. Int. J. Heat Mass Transf. 2019, 143, 118494. [Google Scholar] [CrossRef]
- Hao, J.H.; Chen, Q.; Ren, J.X.; Zhang, M.-Q.; Ai, J. An experimental study on the offset-strip fin geometry optimization of a plate-fin heat exchanger based on the heat current model. Appl. Therm. Eng. 2019, 154, 111–119. [Google Scholar] [CrossRef]
- Li, K.; Wen, J.; Liu, Y.; Liu, H. Application of entransy theory on structure optimization of serrated fin in plate-fin heat exchanger. Appl. Therm. Eng. 2020, 173, 114809. [Google Scholar] [CrossRef]
- Richter Do Nascimento, C.A.; Mariani, V.C.; Coelho, L.D.S. Integrative numerical modeling and thermodynamic optimal design of counter-flow plate-fin heat exchanger applying neural networks. Int. J. Heat Mass Transf. 2020, 159, 120097. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Zhang, Y. Experimental investigation and correlation development for two-phase pressure drop characteristics of flow boiling in offset strip fin channels. Int. J. Therm. Sci. 2021, 160, 106693. [Google Scholar] [CrossRef]
- Hu, H.; Li, J. Experimental investigation on heat transfer characteristics of two-phase flow boiling in offset strip fin channels of plate-fin heat exchangers. Appl. Therm. Eng. 2021, 185, 116404. [Google Scholar] [CrossRef]
- Kedam, N. Heat transfer factor j and friction factor f correlations for offset strip fin and wavy fin of compact plate-fin heat-exchangers. Case Stud. Therm. Eng. 2021, 28, 101552. [Google Scholar] [CrossRef]
- Achaichia, A.; Cowell, T.A. Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surfaces. Exp. Therm. Fluid Sci. 1988, 1, 147–157. [Google Scholar] [CrossRef]
- Connect, P.; Learn, S. Heat and Mass Transfer: Fundamentals and Applications. Bus. Econ. 2014, 15, 774. [Google Scholar]
- Kays, W.M.; London, A.L. Compact Heat Exchangers; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Yang, L.; Sicheng, Q. The optimization design of off-highway machinery radiator based on genetic algorithm and e-NTU. Acta Tech. Csav 2017, 62, 465–476. [Google Scholar]
- Yu, C.; Xue, X.; Shi, K.; Shao, M.; Liu, Y. Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator. Processes 2020, 8, 1687. [Google Scholar] [CrossRef]
- Thulukkanam, K. Heat Exchanger Design Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Tao, W.Q.; Guo, Z.Y.; Wang, B.X. Field Synergy Principle for Enhancing Convective Heat transfer––its Extension and Numerical Verifications. Int. J. Heat Mass Transf. 2002, 45, 3849–3856. [Google Scholar] [CrossRef]
- Lin, W.; Sunden, B. Vehicle Cooling Systems for Reducing Fuel Consumption and Carbon Dioxide: Literature Survey. Int. Powertrains Fuels Lubr. Meet. 2010, 22. [Google Scholar] [CrossRef] [Green Version]
Number of Plies | Fin Height | Heat Transfer Area | Fin Thickness | Tooth Angle | |
---|---|---|---|---|---|
Airside | 10 | 6.5 mm | 2.06 m2 | 0.2 mm | 90° |
Waterside | 9 | 3 mm | 1.37 m2 | 0.2 mm | 90° |
Coefficient of Inertia Resistance C2/1·m−1 | Viscous Drag Coefficient a−1/1·m−2 | Porosity | |
---|---|---|---|
The airside | 10 | 8.15 × 107 | 0.91 |
The waterside | 67 | 2.84 × 107 | 0.93 |
Density kg/m3 | Constant Pressure Specific Heat Capacity J/(kg·K) | Thermal Conductivity W/(m·k) | Dynamic Viscosity Pa·s |
---|---|---|---|
2.656 | 1015 | 32.54 × 10−3 | 22.83 × 10−6 |
Waterside Pressure Drop | Airside Temperature Drop | Waterside Temperature Rise | Heat Exchange Capacity | |
---|---|---|---|---|
The dual-pass | 12.51 kPa | 70.6 °C | 5.5 °C | 21.5 kW |
The single-pass | 10.02 kPa | 66.1 °C | 4.9 °C | 20.1 kW |
Average Temperature | ||
---|---|---|
CFD | High Speed | |
Air-cooled intercooler | 66.3 | 65.7 |
Single-pass water cooling | 53.9 | 52.4 |
Dual-pass water cooling | 49.4 | 51.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Zhang, W.; Xue, X.; Lou, J.; Lao, G. Analysis of Water-Cooled Intercooler Thermal Characteristics. Energies 2021, 14, 8332. https://doi.org/10.3390/en14248332
Yu C, Zhang W, Xue X, Lou J, Lao G. Analysis of Water-Cooled Intercooler Thermal Characteristics. Energies. 2021; 14(24):8332. https://doi.org/10.3390/en14248332
Chicago/Turabian StyleYu, Chao, Wenbao Zhang, Xiangyao Xue, Jiarun Lou, and Guochao Lao. 2021. "Analysis of Water-Cooled Intercooler Thermal Characteristics" Energies 14, no. 24: 8332. https://doi.org/10.3390/en14248332
APA StyleYu, C., Zhang, W., Xue, X., Lou, J., & Lao, G. (2021). Analysis of Water-Cooled Intercooler Thermal Characteristics. Energies, 14(24), 8332. https://doi.org/10.3390/en14248332