Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements
Abstract
:1. Introduction
2. Measurement Set-Up
- stack temperature: 75 °C;
- air and hydrogen backpressure: 150 kPa (abs);
- relative humidity of air and hydrogen: 50%;
- flow rate of hydrogen: 5 dm3∙min−1 (99.999% purity);
- flow rate of air: 15 dm3∙min−1.
3. Experimental Results and Discussion
3.1. Impedance Spectra Measurements
3.2. Low-Frequency Noise Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Konno, N.; Mizuno, S.; Nakaji, H.; Ishikawa, Y. Development of Compact and High-Performance Fuel Cell Stack. SAE Int. J. Altern. Powertrains 2015, 4, 123–129. [Google Scholar] [CrossRef]
- Jayakumar, A. An Assessment on Polymer Electrolyte Membrane Fuel Cell Stack Components. In Applied Physical Chemistry with Multidisciplinary Approaches, 1st ed.; Haghi, A.K., Balköse, D., Thomas, S., Eds.; Apple Academic Press: Boca Raton, FL, USA, 2018; pp. 23–49. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef]
- Mitzel, J.; Gülzow, E.; Kabza, A.; Hunger, J.; Araya, S.S.; Piela, P.; Alecha, I.; Tsotridis, G. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking. Int. J. Hydrogen Energy 2016, 41, 21415–21426. [Google Scholar] [CrossRef]
- Cao, T.-F.; Lin, H.; Chen, L.; He, Y.-L.; Tao, W.-Q. Numerical investigation of the coupled water and thermal management in PEM fuel cell. Appl. Energy 2013, 112, 1115–1125. [Google Scholar] [CrossRef]
- Hinaje, M.; Nguyen, D.; Raël, S.; Davat, B.; Bonnet, C.; Lapicque, F. Impact of defective single cell on the operation of polymer electrolyte membrane fuel cell stack. Int. J. Hydrogen Energy 2009, 34, 6364–6370. [Google Scholar] [CrossRef]
- Vandamme, L.K.J. Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Electron Devices 1994, 41, 2176–2187. [Google Scholar] [CrossRef] [Green Version]
- Jones, B. Electrical noise as a reliability indicator in electronic devices and components. IEE Proc.—Circuits Devices Syst. 2002, 149, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Hladky, K.; Dawson, J.L. The measurement of corrosion using electrochemical 1/f noise. Corros. Sci. 1982, 22, 231–237. [Google Scholar] [CrossRef]
- Cheng, W.; Luo, S.; Chen, Y. Use of EIS, Polarization and Electrochemical Noise Measurements to Monitor the Copper Corrosion in chloride media at different temperatures. Int. J. Electrochem. Sci. 2019, 4254–4263. [Google Scholar] [CrossRef]
- Smulko, J.; Darowicki, K.; Zieliński, A. Detection of random transients caused by pitting corrosion. Electrochim. Acta 2002, 47, 1297–1303. [Google Scholar] [CrossRef]
- Grafov, B.M.; Dobrovolskii, Y.A.; Klyuev, A.; Ukshe, A.; Davydov, A.D.; Astafev, E.A. Median Chebyshev spectroscopy of electrochemical noise. J. Solid State Electrochem. 2017, 21, 915–918. [Google Scholar] [CrossRef]
- Smulko, J.; Darowicki, K.; Wysocki, P. Digital measurement system for electrochemical noise. Pol. J. Chem. 1998, 72, 1237–1241. [Google Scholar]
- Cottis, R.A. Interpretation of Electrochemical Noise Data. Corrosion 2001, 57, 265–285. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.; Behnamian, Y.; Gao, Z.; Wu, Z.; Qin, Z.; Xia, D.-H. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods. Measurement 2019, 138, 54–79. [Google Scholar] [CrossRef]
- Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P. Application of electrochemical noise analysis to the study of batteries: State-of-charge determination and overcharge detection. J. Power Sources 1999, 83, 93–99. [Google Scholar] [CrossRef]
- Astafev, E.A. Measurements and Analysis of Electrochemical Noise of Li-Ion Battery. Russ. J. Electrochem. 2019, 55, 488–495. [Google Scholar] [CrossRef]
- Szewczyk, A. Measurement of Noise in Supercapacitors. Metrol. Meas. Syst. 2017, 24, 645–652. [Google Scholar] [CrossRef]
- Legros, B.; Thivel, P.-X.; Bultel, Y.; Nogueira, R. First results on PEMFC diagnosis by electrochemical noise. Electrochem. Commun. 2011, 13, 1514–1516. [Google Scholar] [CrossRef]
- Denisov, E.S.; Evdokimov, Y.K.; Martemianov, S.; Thomas, A.; Adiutantov, N. Electrochemical Noise as a Diagnostic Tool for PEMFC. Fuel Cells 2016, 17, 225–237. [Google Scholar] [CrossRef]
- Astafev, E.A.; Ukshe, A.E.; Manzhos, R.A.; Dobrovolsky, Y.A.; Lakeev, S.G.; Timashev, S.F. Flicker Noise Spectroscopy in the Analysis of Electrochemical Noise of Hydrogen-air PEM Fuel Cell During its Degradation. Int. J. Electrochem. Sci. 2017, 12, 1742–1754. [Google Scholar] [CrossRef]
- Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S. Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J. Power Sources 2017, 342, 553–561. [Google Scholar] [CrossRef]
- Astafev, E.A. Electrochemical Noise Measurement of Polymer Membrane Fuel Cell under Load. Russ. J. Electrochem. 2018, 54, 554–560. [Google Scholar] [CrossRef]
- Astafev, E.A.; Ukshe, A.; Gerasimova, E.V.; Dobrovolsky, Y.; Manzhos, R.A. Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J. Solid State Electrochem. 2018, 22, 1839–1849. [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Astafev, E.A. Comparing the Method and Hardware for Electrochemical Impedance with the Method of Measuring and Analyzing Electrochemical Noise. Russ. J. Electrochem. 2018, 54, 1022–1030. [Google Scholar] [CrossRef]
- Monrrabal, G.; Huet, F.; Bautista, A. Electrochemical noise measurements on stainless steel using a gelled electrolyte. Corros. Sci. 2018, 148, 48–56. [Google Scholar] [CrossRef]
- Janicka, E.; Mielniczek, M.; Gawel, L.; Darowicki, K. Optimization of the Relative Humidity of Reactant Gases in Hydrogen Fuel Cells Using Dynamic Impedance Measurements. Energies 2021, 14, 3038. [Google Scholar] [CrossRef]
- Darowicki, K.; Janicka, E.; Mielniczek, M.; Zieliński, A.; Gaweł, L.; Mitzel, J.; Hunger, J. The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit. Appl. Energy 2019, 251, 113396. [Google Scholar] [CrossRef]
- Darowicki, K.; Janicka, E.; Mielniczek, M.; Zielinski, A.; Gaweł, L.; Mitzel, J.; Hunger, J. Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks. Electrochim. Acta 2018, 292, 383–389. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Song, C.; Wang, H.; Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Kotarski, M.M.; Smulko, J.M. Hazardous gases detection by fluctuation-enhanced gas sensing. Fluct. Noise Lett. 2010, 9, 359–371. [Google Scholar] [CrossRef]
- Astafev, E.A. Wide-frequency band measurement and analysis of electrochemical noise of Li/MnO2 primary battery. J. Solid State Electrochem. 2019, 23, 1705–1713. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, A.; Gaweł, Ł.; Darowicki, K.; Smulko, J. Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements. Energies 2021, 14, 8340. https://doi.org/10.3390/en14248340
Szewczyk A, Gaweł Ł, Darowicki K, Smulko J. Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements. Energies. 2021; 14(24):8340. https://doi.org/10.3390/en14248340
Chicago/Turabian StyleSzewczyk, Arkadiusz, Łukasz Gaweł, Kazimierz Darowicki, and Janusz Smulko. 2021. "Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements" Energies 14, no. 24: 8340. https://doi.org/10.3390/en14248340
APA StyleSzewczyk, A., Gaweł, Ł., Darowicki, K., & Smulko, J. (2021). Assessment of Fuel Cells’ State of Health by Low-Frequency Noise Measurements. Energies, 14(24), 8340. https://doi.org/10.3390/en14248340