Analysis of Biological Degradation and Life Cycle Indicators of Mineral Diesel Fuel Mixtures, Containing 10% Biodiesel, Obtained by Simultaneous Oil Extraction and Transesterification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Biological Degradation
2.2. Life Cycle Analysis of Fuel
3. Results and Discussions
3.1. Properties of Fuel Mixtures
3.2. Biological Degradation of Fuel
3.3. Life Cycle Analysis of Fuel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yassine, M.H.; Wu, S.; Suidan, M.T.; Venosa, A.D. Aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends. Environ. Sci. Technol. 2013, 47, 4619–4627. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.S.; Rezende, R.P.; Romano, C.C.; Dias, J.C.T.; Marques, E.L.S.; Lobo, I.P.; da Cruz, R.S. An outlook on microbial behavior: Mimicking a biodiesel (B100) spill in sandy loam soil. Fuel 2019, 235, 589–594. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Zaja, G.; Szyszlak-Darglowicz, J. Ecotoxicity of soil contaminated with diésel fuel and biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef] [PubMed]
- Leme, D.M.; Grummt, T.; Heize, R.; Sehr, A.; Renz, S.; Reinel, S.; de Olivera, D.P.; Ferraz, E.R.A.; Rodrigues, M.R.; Machado, M.C.; et al. An owerview of biodiesel soil pollution: Databased on cytotoxicity and genotoxicity assesments. J. Hazard. Mater. 2012, 199, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.M.; Montagnolli, R.N.; Bidoia, E.D. Biodegradation of Soybean Biodiesel Generates Toxic Metabolites in Soil. Water Air Soil Pollut. 2020, 231, 429. [Google Scholar] [CrossRef]
- Bamgbose, I.A.; Anderson, T.A. Assessment of three plant-based biodiesels using a daphnia magna bioassay. Environ. Sci. Pollut. Res. 2017, 25, 4506–4515. [Google Scholar] [CrossRef] [PubMed]
- Bamgbose, I.A.; Anderson, T.A. Ecotoxicity of three plant-based biodiesels and diesel using, Eisenia fetida. Environ. Pollut. 2020, 260, 113965. [Google Scholar] [CrossRef]
- Pikula, K.S.; Zakharenko, A.M.; Chaika, V.V.; Stratidakis, A.K.; Kokkinakis, M.; Waissi, G.; Rakitskii, V.N.; Sarigiannis, D.A.; Hayes, A.W.; Colemanh, M.D.; et al. Toxicity bioassay of waste cooking oil-based biodiesel on marine microalgae. Toxicol. Rep. 2019, 6, 111–117. [Google Scholar] [CrossRef]
- Eck-Varanka, B.; Kováts, N.; Horváth, E.; Ferincz, Á.; Kakasi, B.; Nagy, S.T.; Imre, K.; Paulovits, G. Eco and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays. Ecotoxicol. Environ. Saf. 2018, 151, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J.M.; Tamada, I.S.; Lopes, P.R.M.; Montagnolli, R.N.; Bidoia, E.D. Biodegradation and phytotoxicity of biodiesel, diesel, and petroleum in soil. Water Air Soil Pollut. 2014, 225, 1962. [Google Scholar] [CrossRef]
- Woźniak-Karczewska, M.; Lisiecki, P.; Białas, W.; Owsianiak, M.; Piotrowska-Cyplik, A.; Wolko, L.; Ławniczak, L.; Heipieper, H.J.; Gutierrez, T.; Chrzanowski, L. Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Sci. Total Environ. 2019, 671, 948–958. [Google Scholar] [CrossRef]
- Prince, R.C.; Haitmanek, C.; Lee, C.C. The primary aerobic biodegradation of biodiesel B20. Chemosphere 2008, 71, 1446–1451. [Google Scholar] [CrossRef]
- Vauhkonen, V.; Lauhanen, R.; Ventelä, S.; Suojaranta, J.; Pasila, A.; Kuokkanen, T.; Prokkola, H.; Syväjärvi, S. The phytotoxic effects and biodegradability of stored rapeseed oil and rapeseed oil methyl ester. Agric. Food Sci. 2011, 20, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Kazanceva, I.; Sendžikienė, E.; Sendžikaitė, I. Evaluation of biodegradability and stability of biodiesel fuel and its mixtures. Agric. Sci. 2017, 24, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P.; Makareviciute, D. Biodegradability of biodiesel fuel of animal and vegetable origin. Eur. J. Lipid Sci. Technol. 2007, 109, 493–497. [Google Scholar] [CrossRef]
- Mariano, A.P.; Tomasella, R.C.; Oliveira, L.M.D.; Contiero, J.; Angelis, D.F.D. Biodegradability of diesel and biodiesel blends. Afr. J. Biotechnol. 2008, 7, 1323–1328. [Google Scholar]
- Horel, A.; Schiever, S. Influence of constant Influence of constant and fluctuating temperature on biodegradation rates of fish biodiesel blends contaminating Alaskan sand. Chemosphere 2011, 83, 652–660. [Google Scholar] [CrossRef]
- Hafzan, C.; Noor, Z.Z.; Hussein, N.; Sabli, N.S.M. Life cycle assessment of diesel blending production. Environ. Eng. Res. 2021, 26, 200297. [Google Scholar] [CrossRef]
- Chung, Z.L.; Tan, Y.H.; Chan, Y.S.; Kansedo, J.; Mubarak, N.M.; Ghasemi, M.; Abdullah, M.O. Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatal. Agric. Biotechnol. 2019, 21, 101317. [Google Scholar] [CrossRef]
- Farell, S.; Cavanagh, E. An introduction to life cycle assessment with hands-on experiments for biodiesel production and use. Educ. Chem. Eng. 2014, 9, e67–e76. [Google Scholar] [CrossRef]
- Collotta, M.; Champagne, P.; Tomasoni, G.; Alberti, M.; Busi, L.; Mabee, W. Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective. Renew. Sustain. Energy Rev. 2019, 115, 109358. [Google Scholar] [CrossRef]
- Vargas-Ibáñez, L.T.; Cano-Gómez, J.J.; Zwolinski, P.; Evrard, D. Environmental assessment of an animal fat based biodiesel: Defining goal, scope and life cycle inventory. Procedia CIRP 2020, 90, 215–219. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Kazanceva, I. Life Cycle Analysis of Rapeseed Oil Butyl Esters Produced from Waste and Pure Rapeseed Oil. Pol. J. Environ. Stud. 2018, 27, 829–830. [Google Scholar] [CrossRef]
- Organisation for Economic Cooperation and Development OECD. OECD Guideline for Testing Chemicals: 301 Ready Biodegradability; Adopted by the Council on 17 July 1992-Ready; OECD: Paris, France, 2021; pp. 1–62. Available online: https://www.oecd.org/chemicalsafety/risk-assessment/1948209.pdf (accessed on 25 October 2021).
- Sendžikienė, E. Usage of Fatty Wastes of Agricultural Origin for the Production of Biodiesel. Ph.D. Thesis, Lithuanian University of Agriculture, Akademija, Lithuania, 2005. [Google Scholar]
- Kazanceva, I. Reduction of Environmental Pollution by Using Biobutanol for the Production of Biodiesel Fuel. Ph.D. Thesis, Lithuanian University of Agriculture, Akademija, Lithuania, 2012. [Google Scholar]
- U.S. Department of Energy. 2020. Available online: https://www.energy.gov/ (accessed on 11 September 2021).
- Harding, K.G.; Dennis, J.S.; von Blottnitz, H.; Harrison, S.T.L. A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J. Clean. Prod. 2008, 16, 1368–1378. [Google Scholar] [CrossRef]
- Gade, A.L.; Hauschild, M.Z.; Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assesment. Sci. Toatal Environ. 2021, 761, 143280. [Google Scholar] [CrossRef] [PubMed]
- Spirinckx, C.; Ceuterick, D. Biodiesel and fossil diesel fuel: Comparative life cycle assessment. Int. J. Life Cycle Assess. 1996, 1, 127–132. [Google Scholar] [CrossRef]
Material | Unit | Fuel Type | |||
---|---|---|---|---|---|
MD90-RBE10 | MD90-REE10 | MD90-RME10 | MD100 | ||
Rapeseed | kg | 279 | 279 | 279 | - |
Mineral diesel | kg | 900 | 900 | 900 | 1000 |
Lipase (Lipozyme LT IM) | kg | 5.022 | 4.185 | 4.185 | - |
Butanol | kg | 21.606 | - | - | - |
Ethanol | kg | - | 13.430 | - | - |
Methanol | kg | - | - | 9.343 | - |
Process | |||||
Electricity | MJ | 1313 | 1313 | 1313 | 5000 |
Heating | MJ | 1173 | 1173 | 1173 | 27,300 |
Quality Indicator | Unit | MD90-RME10 | MD90-REE10 | MD90-RBE10 | Method of Determination | EN 590 and EN 14214 |
---|---|---|---|---|---|---|
Ester content in biological part of fuel | % (w) | 98.75 | 99.89 | 99.08 | EN 14103 | - |
Density at 15 °C | kg m−3 | 821 | 819 | 831 | EN ISO 3675 LST EN ISO 12185 | 820–845 |
Viscosity at 40 °C | mm2 s−1 | 2.17 | 2.11 | 2.33 | EN ISO 3104 | 2–4.5 |
Flash point | °C | 78 | 78 | 73 | EN ISO 3679 | Min 55 |
Sulfur | mg kg−1 | 0 | EN ISO 20846 EN ISO 20884 | Max 10 | ||
Cetane number | - | 43.29 | 43.35 | 46.72 | EN ISO 5165 | Min 51 |
Copper strip corrosion (3 h at 50 °C) | grade | 1 grade | EN ISO 2160 | 1 grade | ||
Oxidation stability at 110 °C | h | 17.87 | 7.49 | 12.84 | EN 14112 | Min 20 |
Cold filter plugging point | °C | −36 | −37 | −33 | EN 116 | −32 |
Monoglyceride | % (w) | 0.46 | 0.00 | 0.03 | EN 14105 | - |
Diglyceride | % (w) | 0.07 | 0.08 | 0.09 | EN 14105 | |
Triglyceride | % (w) | 0.00 | 0.00 | 0.09 | EN 14105 | |
Free glycerol | % (w) | 0.00 | 0.00 | 0.00 | EN 14105 |
Fuel Type | Polynomial Equations of Biodegradation | Coefficient of Determination, R2 |
---|---|---|
MD100 | y = 0.0039x2 + 0.7001x − 0.7928 | 0.9763 |
RME100 | y = −0.1804x2 + 7.9273x + 6.6964 | 0.9590 |
MD90-RME10 | y = −0.0332x2 + 21322x − 0.1804 | 0.9702 |
MD90-REE10 | y = −0020x2 + 1.466x − 1.5292 | 0.9954 |
MD90-RBE10 | y = −0.0115x2 + 1.1925x − 1.2278 | 0.9928 |
Exposure Category | Units | Fuel Type | |||
---|---|---|---|---|---|
MD100 | MD90-RME10 | MD90-REE10 | MD90-RBE10 | ||
Abiotic depletion | kg Sb eq/kg | 53 | 24 | 24 | 24 |
Acidification | kg SO₂ eq/kg | 15.02 | 8.04 | 7.97 | 8.04 |
Global warming | kg CO₂ eq/kg | 0.0018 | 0.00107 | 0.00106 | 0.00107 |
Ozone layer depletion | kg trichlorfluormethane eq/kg | 0.00138 | 0.000609 | 0.000605 | 0.000609 |
Human toxicity | kg 1.4-dichlorbenzene eq/kg. | 1.85 × 103 | 691 | 666 | 691 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makareviciene, V.; Santaraite, M.; Sendzikiene, E. Analysis of Biological Degradation and Life Cycle Indicators of Mineral Diesel Fuel Mixtures, Containing 10% Biodiesel, Obtained by Simultaneous Oil Extraction and Transesterification. Energies 2021, 14, 8367. https://doi.org/10.3390/en14248367
Makareviciene V, Santaraite M, Sendzikiene E. Analysis of Biological Degradation and Life Cycle Indicators of Mineral Diesel Fuel Mixtures, Containing 10% Biodiesel, Obtained by Simultaneous Oil Extraction and Transesterification. Energies. 2021; 14(24):8367. https://doi.org/10.3390/en14248367
Chicago/Turabian StyleMakareviciene, Violeta, Migle Santaraite, and Egle Sendzikiene. 2021. "Analysis of Biological Degradation and Life Cycle Indicators of Mineral Diesel Fuel Mixtures, Containing 10% Biodiesel, Obtained by Simultaneous Oil Extraction and Transesterification" Energies 14, no. 24: 8367. https://doi.org/10.3390/en14248367
APA StyleMakareviciene, V., Santaraite, M., & Sendzikiene, E. (2021). Analysis of Biological Degradation and Life Cycle Indicators of Mineral Diesel Fuel Mixtures, Containing 10% Biodiesel, Obtained by Simultaneous Oil Extraction and Transesterification. Energies, 14(24), 8367. https://doi.org/10.3390/en14248367